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FOREWORD

The research prograw summarized in this report was inltiated 1 June.}962
by AF Flight Dynamics Laboratory, Research and Technology Division, Wright-
Patterson Air Force Base, Ohio. The research effort counsisted of converting
RID*s Six-Degree-of-Freedom Flight Path generalized cowputer program from 505
to FORTRAN/FAP computer language and was undertaken as a portion of the study
conducted by McDonnell Aircraft Corporation under USAF Contract No. AF"}(bb{)—
8829 during the period 1 June 1962 to 31 December 1963. This report, prepared
by A, E. Combs, McDonnell Aircraft Corporaticon, is essentially the original
formulation report (WADD TR-60~781l, Part I) with the additions, modifications,
and corrections made since its publication. Mr. B. B. Benson of the AF Flight
Dynamics Laboratory hes been the Air Force technical representative.

This report was prepared under Project 1431, "Flight Path Analysis", Task
143103, "Six-Degree-cf-Freedom Flight Path Analysig".

Lo wenhare see Indebtol b Mesors. Do Je Bouads and K. D. xesice oI tie

Systen ﬁbcunology Division for ccatributions to the original analytical forwu-
iletion and to the following members of the McDonnell Automation Center:

Messrs. F. W. Seubert and N. E. Usher for design and modification of the
computing program, and R. F. Vorwald for further modification, correction,

and conversion of the machine language.

For ease of reading, the documentation of this project has veen prepared
in several parts. The total documentation is summerized as follows:

Part I

Volume 1 Bessic Problem Formulation

i

Volume 2 Structursl Loads Formulation

Voluae

W
1

Optimization Problem Formulation
Part II

Volume 1L - User's Manual for Part I, Volume

L
b

Volume @ - User's Manual for Part I, Volur= 2

‘“'vx~ Voluwe 3 - User's Manual for Part 1, Volume 3
" -
RS
-
—
\.\ -
.

R
&,
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v ABSTRACT
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. A trajectory computation program is Gsscribed for determsesny vehicle per-
formance throughout the entire flight regime of spezd and altitude in the
atwosphere and graviiy lleld ol a non-spherical rotating planet. The program
is formulated for seven options of varying refinemcni from the six-degree-of-
freedom problem to the two-degree point mass problem. A reverse option for
the aerodynamic analysis of flight test data, a punched card cutput, and a
seml-automatic computational tie to an interplanetary trajectory computer
program are included. The program is specilically oriented for computation
on the IBM 7090/709l4 digital computer using the FAP/FORTRANZ machine language.,
i

This techaical documentary report has nein variewed :nd is approved. ”/L
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SYMBOLS -AND NOMENGEATURE- = -i- e oeeo o

The symbols and nomenclature used in the .formulaticn of the. - Six-Degrag-of-
Freedom Flight-Path Study computer program ars summarized in this secilom.
Gtuendard sywbols, currently in uee in the flelds to vwhich they are applied,
have been used whenever such use does not result ln conflicts. Duplicity of
gymbols has been allowed for derivation purpcses; however, all quantities. computed
by the program have unique symbols assigned. The englneering notation and the
normal units for each quantity sre included with the definition. The sywbols
and definitions have been subdivided according to usage as follows:

tategory Page
Aerodynamics o o o s o o o s s s s e s o s e v e s s« » Xidi
Azrodynamic Healing . « o « ¢ o o o + ¢ ¢ o o o ¢ o s o« AX
Angular Position DAt8. « o« « o o ¢ o o o ¢ o o o « o « o xxii
Angular Veloecltles . ¢ ¢ ¢ v o o o o v o o o s o o o o o Xxiv
Atmosphere Data. o« o o 4« 4 ¢ o o o s s o o o 2 s o s o &+ XXV
AXes SYSLEIS o o o o o ¢ o 5 o o 8 s s o o & ¢ o ¢ o o 2 XXVi
Body Physical Dula o o ¢ = v ¢ o o « o o ¢ s o o a o o o =xXVLILL
Directlon Cosinese. o o o+ o ¢ o o ¢ ¢ o s ¢ o o o s o o - XXX
Enpine Deta. o . v . v v e 0 0 s w0 e 0w a0 e s s ¥exd
Flipht-Plan Pro. rammer and Autopilot « ¢« « o ¢ « + o o« o xxxddl
Forces and MOmENLS « o« o o o « & o & ¢ & ¢ s 0 o ¢ o « o XXXV
Geophysical Data « « o o ¢« ¢ « o 4 o o o ¢ o s 2 o « » » Xxxuvi
Lineur Velocitiess + o ¢ o o ¢ o & o ¢ o ¢ ¢ ¢ ¢ o » o« » Xxxvii
Peoition Datae o« ¢ 4 ¢ 4 6 v 6 6 6 ¢ v e e e o oo s o2 oe . xxviil

Miscellaneous.: « « v v + o & ¢ ¢ 1 v e e 1 e o+ s o+ o+ o« Xxxix



SYMBOLS

AERODXNAMIGS

DEFINTITION AND UNITS

Wind Axes Forces - Pounds

Drag

Side Force (alsoc inertial or space-fixed
coordinate system)

Lift (also summetion of rolling moments in the
body axes system)

Body Axes Forces - Pounds

Axial Force
S1de Force (also body-axes coordinate system)
Normal Force

Aerodynamic Body Axes Moments - Foot-Pounds

Moment About the x Axis
Moment. About the y Axis
Moment About the = Axis

Coefficlents - Dimeansionless

Axial Force Coefficlent

Side Force Coelliclent (body axis)

Normal Force CoefTicient

Rolliny Moment Coelficient

Pitching Moment Cosfficient

Yawing Mowent Coefficlent

Drag Coeffiecient

Side Force Coelficient (wind axis)

Lift Coetficient

Skin Friction Coefficient

Pressure Coefficient

Dynamic Pressure - pounds/square foot

Reynolds Number

Coefficient of Viscosity - slugs/foot-second (also
gravitational potential constant)

Axial Force Coefficient Defined in the Plane of
ap, = a/q*s

Normal Force Coefficient Defined in the Plane of
&y = nﬁ/q*S

Fitching Moment Coefficient Defined in the Plane
of am,= m"/q*Sd;y

xiii
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Cag2

Mognus Terms L e

Magnus Force Coefficient = 3C§R (pdy/2Va)

Magnus Moment Coefficient = 0Cp/d (pdy/2V,)

Chata=p~= 09 - dimensionless
oCp/Ba - per degree

BCA/Eiaa - per degree®

3Cy/Op - per degree

6CA/6[32 - per degree®

aCp /6B, - per degree

60/353 - per degree®

E.-QCA/ba\aB - per degree2

?J?CA[wb'éq - per degre<-32

BQCA/E:EBBq - per cle:.greeE

Cp at By = B = 8. = 07 - dimensionless
Cyata=p= 0° - dimensionless
oCyfoa - per degree
?JCN/&OLZ - per degrec’
oCy/op - per degree
bCN/bﬁa - per deg,reee
?,CN/Bﬁq - per degree
ch/’c‘Jﬁg - per degree2
bchfcabe - per degrec:2
becnfdaabq - per degree2
BECN/Oﬁb'éq - per degree2
BCN/B(é‘ﬂl/EVa) - per radian

BQCN/G (641 /2V,)9%c g, - per vadian per foot
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Bcn/a(qdllﬂva,) = per radien
BQCN/a(qdlﬂ

Cmatspf'«ﬁq'-—'-ér"

Bxc.G - per radiau per foot

E
=

-
4

Fny

= dimensionless
Cy at @ = = 0° - dimensionless

ocy/oa

?ch/baa - per degree

- per degree

2

4 g A, A e g

0C,/0p - per degree -
acy/ag"‘ - per degree”
EJCy/aar - per degreue
BCy./abrg - per degre:e2
Becy/aobbr - per degree’
Gzcy/aobfj - per degree?

-0 2
o'-cy[daBSr - per degrec
Z;Cy/?)(éu,)/EV ) - per radian
o% fo(fay/av,

acy/a(rde/EVa) - per radien

ox(, G, - per radian per foot

C2Cy/5'(rd2/2va)5xc.G. - per radian pcr foot
C,atd_=58_=0b_ = 0° - aimensionless
g P r

Crata=§8 = 0° - dimengionless

0C; foq - per degree
5ClﬁJa - per dez_r.reee
6C1 /0B - per degree
501/8[32 - per de;g;ree2
i}cl/-?)sp

- 2
oCl/c\)'c“\% - per degree

- per dugroe



(cy)

m ~

Cip
oy
il

6201/5013(3 - per degree”

ooy s - por deses’
Bgclfaﬁaﬁp - par degree?
oCy /0 (pdy/2Vg) - per radian
0Cy fo(rdp/av,) - per radien
becl/a(rd2/2va)BxC_G' - per radian per foot
Cy at ép = 6q =08, = 0° - aimensionless

Cp 8t @ = p = 0° - dimensionless

SCp/oa - per depree
5Cm/ba2 - per de;;ree2
OCp/op - per depree
5Cm/bﬁ2 - per degree®
OCpfudy = per degree
acm/Eaa . per deproe”
CECm/axbb - per degree2
bBCm/bubﬁq - per desree”
bzcm/aﬁbﬁq - per deprec®

0C,fo(&dy /2V,) - per radisn
52()m/6(c'xdl/2va)i)xc,c. - per radian per foot
Z;Cm/u(qdl/EVa) - per radiuan
bzcm/a(qdl/2va)axC.G' - per radian per Foot
Cp at B, = By = b, = 0° - dimensionless
Chata=p= 0° - dimensilonless

OCpfO0 - per degree
oCpfocf - per degree”
oCp/0p - per degree

)

N 2 . o
¢Cp/ob” - per cegree

xvi
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DEFINITION AND UNITS

0C, /08, - per dedree

s 4 SR
<2 o
& 8
&

r
- 3 o]
Cn&f vC,/08.2 - per degree” E
Cngp BQCn/aabB - per degree2 3
~ N 2 >
Cnap,, oecn/aaoar - per degree -g
- TN 2 =
Ny 0“C, /opud, - per degree Z
Cné oC,fo(pap/avg) - nwv redian ;é
hY- (8 5 :
= Cnéx o Cn/E(Bdg/EVa)oxc.G. - per radian per foot |
= Cnyp oCp/u(rdy/2V,) - per radian -
= - . - z
- Cnrx decn/b(rdg/EVa)uxC_G. - per radian per foot
y - - = 0% . : 2
(c )6 -0 C, ab bp = Sq = 5r =0 dimensionless
Aerothermoelastic Coelfficients
A1 Firs% Order Elastic Coefficient in CA Equation -
feet</pound
As 5900 d Order Elastic Coelficient in CA Equation -
/puuudg
A3 First Order Elastic Coefficient in LA5 Equavion =~
Feet?/pound
Al ) Seooﬁd Ordpr Flagtic Coefficlent in CAb Equation -
feet /pound a
Ag Plrst Order Elastic Coefficicnt in CN Equation -
reet?/pound
Ag Second Order Elastic Coefficicnt in CN Equation -
feet /pound2
Ay Firbt Order Elastic Coefficient in CN5 Equation -
feet?/pound q
Ag Secopd Order Elastic Coefficient in Cﬁa Equation -
feet™ /pouna? 4
Ag First Order Elastic Coefficient in Cy5 Equation -
feet2/pound
Ao Second Order Elastic Coefficient in Cy Equation -
feetl /poung? p
xvii
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SYMBOLS DEFINITION AND UNITS g
A First Order Elastic Coefficlent 1n Cy Eq,uaf.ion -’ o =
11 § Order E1 VB : ==
feet=/poun 2y
Ao Secogd Order Elastic Coefficlent in Gyar Equation - “_‘3
feet™/pound?® 3
4
A13 First Order Elastic Coefficient in cla Equation ~ 3
feet?/pound .
1o
Ayy Second Order Elastic Coefficlent in C{a Equation - R
feeth /pouna? E
Ays First Order Elastic Coefficient in 015 Equation - ? %
feet?/pormd P
;; Ag Seco&d Order Elastic Coefficient in C1ﬁp Equation - : i
== feet*/pounad®
= A7 First Order Elastic Coefficient in Cp, Equation -
feet2/pound
A18 Second Order Elastic Coefficiznt in Cma Equation -
fcetl/pounue
T Mg First Order Elastic Coeflicient in Cm5 Equation -
feet?/pound q
Anp Second Order Elastic Coeflicleant in C Mg kEguation -
teet /pound?
A2y First Order Elastic Coefficient in C; Equation -
feet?/pound B
Aoo Second Order Elastic Coefficicnt in C Equation -
feet™/pound? "B
Apg First Order Elastic Coefficient in Cng Equation -
feet?/pound
Loy Second Order Flastic Coefficient in Cna Equation -
feet*/pound®
€1 Error Multiplier for Cy - dimensionless
€p Incremental Error in Cy ~ dimensionless
€3 Error Multiplier for Cp ~ dimensionless
€l Tacremental Error in Cp - dimensionless
€5 Error Multiplier for Cy - dimensionless

xviil
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SYMBQLS DEFINITION AND UNTTS . ﬁ

€ Tucremental Brror in ‘Cy - dimensionless ‘:

€7 Error Multiplier for Cy - Gimensionless F*
€8 Incremental Error in Cy - dimensionle.s g
€9 Error Multiplier for Cp - dimenslonless ﬁi
€0 Incremental Error in Cp - dimensionless 71‘57
€11 Error Multiplier for C, - dimensionless :
€0 Incremental Error in C, - dimensionless l ;

i
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AERODYNAMIC HEATING

SYMBOLS DEFINITION AND UNITS

A

£ P =0 Specific Heat at Tg=0 - BTU/pound °R
Cpg Specific Heat of the $kin - BTU/pound R
B
CP Pressure Coefficient
D, -Dg Constants
D7 Wedge Angle - degrees p
£i H Free Stream Enthalpy of Air - BTU/pound (slso ‘ A
- angular momentum and gravitational potential C
= harmonic constant)
= H* Reference Euthelpy - BTU/pound
Hy Adiabatic Wall Enthalpy - B’I'U/pound
Hg Enthalpy Based on Equilibrium Stagnatlion
Temperatbure - ©R
Heor Reference Enlhalpy of Air at 5H0°R - BTU/pound
H. Skin Enthalpy - B1U/pound
Hr Total Enlbalpy - BTU/pound
HTl Adigbatic Wall Enthalpy at the Stapgnaltion Line
ol' & Hemi-Cylinder Leading Edge - BTU/pound
I, Enthalpy Aft of the Shock Wave - BTU/pound
1y Characteristic Length to Skin Temperature
Point - feet
My, Mach Number Normel to Shock Wave
Mo Mach Number Aft of the Shock Wave
(P_,[."'V)"E/3 Prandtl Number Based on Reference Enthalpy
(raised to the -2/3 power)
Po Stalic Pressure Aft ot Shock Wave - peunds/square
foot
ry Constants Depending upon Reynolds Number
Ty
Ky
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IE i SYMBOLS DEFINITION AND UNITS
i £ .
; - § Ry Reynolds Number Based on Reference Enthalpy .
3 B .
! ? RNog 1o Criticel Reynoclds Number
. Rug Reynolds Number Aft of the Shock Wave (local)
‘ Te Equilihrium Stagnation Temperature - °R
E T Temperature Based on Reference Enthalpy - OR
‘ : Ty Effective Tempers! :re.of Space - OR
Tq Skin Temperature - °R
ie Skin Temperatur= Rate of Change - °R/sec
Tsest Estimated Skin Temperaturc - OR
To Temperature Aft of the Shock Wave - °R
Vo Velocity Aft of the Shock Wave - feet/second
o) Anle of Attawck of 8%in Surface - deyrces
5] Shock Wave Angle (also sideslip ancle) - degrees
Og Skin Thickness - Fert
€ Emissivity of the Spherical Nose
€g Emissivity of the Skin
ESTS=O Emlogivity of the Skin al TS=O
deg/ar Derivative of Emisslvity with Respect to
Temperature
X Coctficient of Viscosity Based on Reference
Enthalpy - pounds/foot-second
Mo Coefficient of Viscosity Aft of the Shock Wave -
pounds/foot -second
g Skin Density - pounds/foot3
p* Density Based on Reference Enthalpy - pounds/footJ
o Stefan Boltzmann CoEstant (b.758 % 10-13)
BTU/second/f~ot2/%R" (also azimuth angle)



ANGULAR  POSITTON DATA

DEFINITION AND UNITS
Azimuth of Platform Xy Axis - degrees

Equatorial. Angle Between Geocentric and Inertial
Ccordinate System - degrees

Bank Angle - degrees

Equatoriel Angle Between Inertial and Platform
Coordinates - degrees

Angle of Attack - degrees
Total Angle of Attack - degrees

Angle of Sideslip (also shock wave angle) -
degrees .

Elevation Flight-Path fngle - degrees

Elevation Flight-Path Angle Including Effect
of Winds - degrees

Geodetic Flight-Path Angle - degrees

Control Deflection to Induce a Moment About
the x Axis - degrees

Control Deflection to Induce a Moment About
the y Axis - degrees

Control Deflection to Induce a Moment About
the z Axis -~ degrecs

Control Surface Deflections - desrees

Horizontal Flight-Path or Azimuth Angle (also
Stefan-Boltzmann constant) - degrees

Azimuth Angle Including Effect of Winds - degrees
Gecdetic Hotizontal Flight-Path Angle - degrees
Aerodynamic Roll Angle - degrees

Platform Geocentric Latitude - degrees

Anguiar Rotation of the Plane of Swivel of a
Thrust Vectoring Nozzle About the x Axls - degrees
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DEFINITTION AND UNIT®

Angle of Swivel of a Thrust Vectoring Nezmle == -~

degrees -

Eulér Angles Between Body Axes and Local-{uocentric
Horizon Coordinates. Set 1. Yaw-Pitch-Roll
Rotatlion Sequence - degrees

Set 2, Pitch-Yaw-Roll Rotation Sequence - degrees
Set 3. Pitch-Roll-Yaw Rotation Sequence - degrees

Fuler Angles Between Body Axes and Inertial
Coordinates in Degrees

Measured Euler Angles Between Body Axes and Plat-
Torm Axes System - degrees

Euler Angles Between Body Axes and Platform Axes
System. Set 1. Yaw-Pitch-Roll Rotation Sequence -
derrees

Set 2. Pitch-Yaw-Roll Rotation Sequence ~ degrees
Set 3. Pitch-Roll-Yaw Rotatlon Seauence - degrees
Angles Between Rotating Machinery Axes System

and Body Axes System - dcprees

Autopilot Command Values of @p and Ap - degrees

xxiii




SIMBOLS

L~}

ANGULAR_VELOCLTIES

s e e v e T T T g - B

Inertial Angular Rates of-Body Avout Its Axis

Systen - radians/second

Aercelastic Inertial Angular Rates of Body
About Its Axis System - degrees/seccnd

Planet Referenced Angular Rates of Body About
Tts Axis System - radians/second

Measured Inertilal Angular Rates of Body About L
Its Axls System - radians/second P

Rotation Rate of Machinery Within the Body About -
Its Axis System - RPM -

xxiv



ATMOSPHERE DATA LTI
SYMBOLS DEFINITION AND UNTTS
ng Geopotential Altitude - geopotential weters
r Atuosphere Pressure - pounds/foot2
T © Temperature of the Atmosphere (also englne
thrust) - °R
Ty bg;lecular~3cale Temperature of the Atmosphere -~
j v, Speed of Sound - feet/second —
= v Kine%atic Vis cosity of the Atmosphere - -
= feet“/second
) P Mtmosphere Density - slugs/foot3 )
i
XXV



. SYMBOLS

SRy

- MEREYSTIMB

R ey

_DEFINITTON AND UNITS .. ..__
Body Axes Coordinate System or Displacements FrQ_rg 8
Specified Origin in that System (y also serodynamic
side force, body sxes) - feet '

Inertial or Space Fixed Coordinate System or D:_Ls-.-
placements from a Specific Origin in that System
(Y also aerodynamic side force, wind axis) ~ feet
Wind Coourdinate System or Displacements from a
Specified Origin in that System - feet

Earth Reference Coordinate System or Displacements _,
from a Specified Origin in thet System -~ feet .

Local Geocentric-Horizon Courdinotes or Displace-
ments from a Specifisd Origin in that System -~ fect

Local -Geodetic-Horizon Coordinates or Displacements
from a Specified Origin in that System - feet

Measured Displacements in o Coordinate System
Fixed to the Planet (radar cocrdinates) - feet

Platform Coordinate System or Displacements from
a Specified Origin in thai System -« feet

Rotating-Machinery Axis System or Displaceuents
from a Specified Origin in that System - feel

xxvi
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SYMBOLS DEFINTTTION AND UNITS

oy Right Ascension of Planet North Pole -~ degrees
T Planetocentric Equatorial Coordinates Based Upon
A the Earth's Equatorial Plane and the Mean Vernal
r Equinox of Reference Date in Ephemeris Time or

Displacement from a Speclified Origin in that
System - feei

5N Declination of Planet North Pole -~ degrees 1:

"N Hour Angle of the Vernal Equinox. Referenced b
E : with the Intersection of the Planet Equatorial ;
= = Plane and the Earth Equatorial Plane of Reflerence -
' ™ Date - radians -

; My Hour Angle of Launch-Site Meridien with a Plane
Perpendicular to the Intersection of the Planet
: Equatorial Plane and the Earth Equatorial Plane
i = of Reference Date - hours e
Hy Hour Angle of the Vernal Equinox oi' Reference
Date with Respect to the Launch t'oint at the Time
of Launch - hours
tT Sidereal Time - hours
HA Hour Angle ol Planet's Prime Meridian Measured

from the Meridian Pessing Through the Vernal
Equinox of tha Reference Date - degrees

- xxvii
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T syMBOLS " DEFINITTON AND UNITS E
_ : ' B -~
b Wing Span - feet 3
C.G. Center of Gravity 3
dy Reference Length - Longitudinal Plane - feet ;’;
dgp Reference Length ~ Lateral Plane - feet L
E Modulus of Elasticity - pounds/inch® 2
Iyr Moments of Inertia of Rotating Machinery Within i
Iyr the Body About Machinery-Axes System - slugs-fest P
IZI" 4
Ixx Moments of Inertia About the Body Axes -
Iyy slugs-feet2
: ] Iz2
i o Ixy Products of Inertia About the Body Axes -
E - Ty slugs~feet
Iyz
§ L 14 Characteristic Distances for Jet-Demning
; - W Mowents - feet
-n
ly Characteristic Distances for Jet-Damplng
1. Forces - [eet
m Mass of the Body - slugs
lﬁf Fuel Mass Consumed - slugs
Iy Radius of Hemispherical Nose (stagnation region) -
feet
S Reference Area - f‘eet2
Wi weight of the Body - Equal to Mass Times Reference
i = pounds
x0.6. Position Coordinates of the £.G. in Body Coordine
Ye.G. ates - feset
C.Q.
% Y : ,.f" - (Fe ) - feet
& .q *.6. 7 %0 o

xxviii



! te a B 1
) . [ S
LR G AR T R O O ERID 0 1 i ) e ;

Pe
P

€18

tr vent st Yoo - sivgs

Incremental Error

Iucremental. Erroxr

- Incremental Error

Incremental Error
Ineremental Error
Incremental Error
Incremental Error

Incremental Error

xxix

in
in

in

C.G. Location -~ feet

I - slugs-feet2

Lyy

=

slugs~feet2

slugs-feet2

slugs-feet2
2
slugs-feet

slugs-feet2
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SYMBOLS

ajagag
blb2b3

ClC233

d dods
e16233
f1fof3

iliQiB
J1d2d3
klk2k3

110120130
J10320330
k10k20k30

111213
mlm2m3
nji 12113

010203
P1P2P3
Q) Apdy

ulu2u3
le2V3
wlw2w3

DIRECTION COSINES

DEFINITION AND UNTTS

Matrix of Direction Cosines. Used to Transfef
Quantities from Inertial Axes System to Flatform
Axes Systen

Malrix of Direction Cosines., Used to Transfer
Quantities from Local-Geocentric Horizon Coor-
dinate System to Body-Axes System Using Local
Body Euler Angles and to Transfer Quantitles
from the Body Coordinate System to Platforwm Axes
System Using Platform Euler Angles

Matrix of Direction Cosines. Used to Transfer
Quantities from Geocentric Horizon Coordinate
System to Inertial Coordinste System

1, J, k, Directlon Cosines with wy = 0]

Matrix of Directlion Cosines. Used to Transfer
Quantities from Inertial Axes System to Body-
Axes System

Matrix of Direction Cosines. Used Lo Transler
Quantities from Wind Coordinates to the X,, ¥Yg,
Zg System

Matrix of Direclion Cosines. Used to Transfer
Quantities from Body Coordinates to Wind Coor-
dinates

y—
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. ENGINE-DATA

DEFINITION AND UNITS
Engine Exit Area - square feet
Engine Thrust Moments in the Body-Axes System -
foot /pounds
Throttle Setting (also moment -in body-sxes syslem)
Engine Thrust (also tefperature) - pounds
Vacuum Engine Thrust (rocket motor) - pounds
Engine Thrust Forces in the Wind-Axes System -

pounds

Engine Thrust Forces in the Earth Reference Axes
System - pounds

Engine Thrust wu Body Cumponentc - pounds

Engine-Nozzle Swivel Point from Reference Center
of Gravity - feet

Error Multiplier for Thrust Force - dimensionless

Incremental Error in Thrust Force - pounds



DEFINITION AND UNITS

Indication of Platform Accelerometer - feet/secon62

Body Axes Cgmponents of Inertial Acceleration -
feet/second

Bias Values Used in Autopilot Equations

Axial -Force Coefficlent Command

Side~-Force Coefficlent Command

Normal-Force Coefficlent Command

Drag-Force Coefficient Command

Side-Force Coefficient Command

Lift Coefficlent Command
Gain Coefticients

Auxiliary Variables Used for Solution of Autopilot
Differential Equaticns

Autopilot Gains (see defining equations)
Limiter Values {see defining equations)
Body Axes Load Factors - g's

Body Axes Load Factors Commands - g's

Wind Axes Load Factors - g's

Wind Axes Load Factors Commands - g's

xxxil
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Yaw Gyro Bias - degrees o

Yaw Gyrco Deift Rate - degrees/second

Roll Gyro Bies ~ degrees

Roll Gyro Drift Rateé - degrees/second

Tolerance for Assuming By is zero - degrees

Polerance for assuming @ is zero - degrees

Error in Initiel Yaw Alignment - degrees

One-Half Yaw Dead-Band Width -~ degrees

Error in Initial Roll Alignment - degrees

One-Half Roll Dead-Band Width - degrees

Error Multiplier for Pitch torque command -
dimensionless

Pitch Gyro Blas - degrees

One-Half Pitch Dead-Bend Width - degrees

Error in Initial Pitch Alignment - degrees

Pitch Gyro Drift Rate - degrees/second

Error Multiplier for Trim Angle of Attack -
dimensionless

Moment Due to Misalignment of Thrust and/or
Asymmetric Aerodynamics in Pitch - foot-pounds

Moment Due to Misalignment of Thrust and/or
Asymmetric Aerodynamics in Roll - foot-pounds

Moment Due to Misalignment of Thrust and/or
Asymmetric Aerodynamics in Yaw - foot-pounds

Time to Commence Glide Phugse - seconds

Roll Rate Command - degrees/second
2

Precanre Commund - pounds/foot
Dynamic Pressurc Command - pounds/foot®
Angle of Attack Command -~ degrees

Angle of Sideslip Commnand - degrees
Rate Command - desrees/second

Attitude Commands - degrees

3

Density Command - slugs/foot

Density Command Corrected for Planet Rotation -
slugs/foot3

Pitch-Attitude Command - degrees

xxxiit
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Yew-Attitude. Conmmad - Geirées
Damping Ratios - dimen;ioﬁiéss
Longitude Command - degrees
Latitude Command - degrees

Temperature Limiting Attitude Error Signéls - degrees
Time Constant - seconds

Natural Frequency - radians/second




Jo!

gt "~ g ., Fangh g, g, —

DEFINITION AND UNITS
Force - pounds
Summation of Forees in the Body-Axes System

Including the Body Component of Weight - pounds

Summation of ¥™..ces in Earth Reference Axes
System Including the Body Component of Weight -
pounds

Jet Damping Forces - pounds

Anguler Momeatum (also gravitational potential
harmonic constant and enthalpy) - foot-pound-
seconds

Summation of Moments in the Body Axes System (L
also 1ift and N also throttle setting) -

foot ~-pounids

Jet Damping Mowenis - foot-pounds
Summation of Forces in the Wind Axes System -
pounds

Generalized Force Input ~ pounds

Generalized Moment Input - foot-pounds

X
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SYMBOLS .. DEFINITIOR AND UNITS e a
Eraf Reference Gravitationul Acceleration (32. lTh : Eg;
feet/second?) Used to Define Weight =3

1S

gx Components of Gravity in Body-Axes System . ;j%
gy feet/second g

Coumponents of Gravity in Inertiel-Axes System -
feet/second

Components of Gravifg in EBarth-Reference Axes

gl
[
P e et At el et P e N

: = gx"e Systcm = feet/*—"""""" :
R o
i — =
: Xy Components of Gravity in Geocentric Horizon
: 8Ly Coordinates - feet/second
J Gravitational Potential Harmonie Constants (H
: H alsu denotes angular momentum and enthalpy) -
N K dimensionless
k0~k3 Constants in the Equation Relating Geodetic anc
Geocentric Latitude
R Equatorial Radius (reference spheroid) - feet
Rp Polar Radius (reference spheroid) - feet
U Gravitetional Potential - feet2/second®
1] Gravitational Potential Constant {also coefficient
ol viscosity) - feet3/second
wp Planet Rotation Rate - radians/second (positive if
in same direction as planet Earth)
: g Components of the Planet's Rotation Rete in the :
- wy, > Local-Geocentric Coordinate System - radians/second :
€05 Error Multiplier for Atmospheric Density ~ non- f
dimensional
€26 Additive Error for Atmospheric Density - slugs/foot3

xxxvi
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DEFINITION AND UNITS SR

Mach Number

Inertial Velocity Components in Body Coordinates -

feet/second

Measured Inertial Veloclty Components in Body
Coordinates - feet/second

Inertial Wind Velocity Components in Body
Coordinates - feet/second

Inertial Speed - feet/second

Airspeed - feet/second

Velocity Increment Due to Drag - feet/second
Veloclty Increment Due to Gravity - feet/second
Ground Referenced Speed - feet/second

Check Value ol Ground Referenced Velocity vg -
reet/cecond

Velocity Increment Due to Rocket Nomzle Back
Pressure - feet/second

Theoretical Veloclity Increment Due to Typp -
feet/second

Wind Speed - feet/second

Wind Veloeity Components in Local-Geocentric-
Horizon Coordinates - feet/second (Xgw positive
when blowing ncrth, ng posltive when blowing
east, Zgy positive when blowing downward)

Wind Velocity Components in Inertial Coordinates -

feet/second

xxvil
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sneols  DEFINTTTON AND UNTTS

h Gaodetic Altitude - feet
ht Geocentric Altitude -~ feet 7
R Distance from Center of Planet to Body « feeﬁ
Ry Total Distance Traveled Over Planet Surface -
nauticel miles
Rg Approximate Range of Vehicle from Launch Point
Over Great Circlc Path - nautieal miles
R¢L T.ocal Planelt Radius - feet
{f_ t Time - seconds
tg Stage Time - seconds
or, Longitude - degrees
é - ¢g Geodetlc Latitude - degrees
) ., Geocentric Latitudc - deprees
Kq Constant Used in Equatorial Flight to Specify the

Direction of Launch (Kg = 1 for easterly launch;

Kg = =1 for westerly launch) - dimensionless
Rp, Initial Total Distance Traveled Over Ylanet
Surface - nautical miles
R¢Lo Initial Local Planet Radius -~ feet
OLg Initial Longitude ~ deprees
¢go Initial Geodetic Latitude - degrees
= P, Initisl Geocentric Latitude - degrees
9y Initial Heading - degrees
Xp Downrange along Initial Great Circle -~ nautical
. miles
: ¥y Ciissrange from Initial Great Circle - nautical
miles

xxviil
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lx’:Ly,lz

~
-

ref

vl W o

ni

SL

€4
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DEFINITION AND UNITS

Unit Vestor - subscript indicates the axes system

Subscript c Denotes an Autopilot or Flight~Plan
Programmer Command Signal

Subscript ref Indicates Value 1s a Reference
Quantity

A Bar Over a Symbol Denotes a Vector
A Dot Over a Symbol Denotes Time Derivative

Two Dots Over a Symbol Denotes the Second Deriva-
tive with Respect to Time

Subgeript o Denotes - initial, time zero, origin
of axee system, sea level conditions

Radius Vectors

Subscript Indicates Sea Level Reference Valuo

Refers to an Brror Constant, Either Multiplier
or Additive (subseript number defines which one)

Subscript r Denotes Rotating Machinery
Subscript p Denctes Platform

Subscript v Denotes Vertical Axes System



1. _INTREDUCTION

In the current wide-spreed use of high speed digital computing wachines for
solving flight path and vehicle motion problems, it is common praetlice to develop
a number of specialized computer programs each applicatle to a ‘specific preblem.
It is usually found desirable, in formulasting these progrems, to omit many of the
terms of & more general formulation which are considered to be -of ‘secéndary effect
to the particular investigation at hand. This limlts the range of application of
thesé programs and results in considerable duplication of programming for each
new specislized performance enalysis. The object of the present study is: (1)
the formulstion of the generalized equations of motion with six degree of freedom
for the flight-path study of any type of vehicle operating in the atmosphere and
gravity field of a rotating non-spherical planet, and (2) the design of the digital
computer program necessary to solve these equations. A feature of this computer
program is the facility by which restricted problems of less than maximum

sophistication may also be treated,

The general specifilcationswhich were followed in the development of the
required Six~Degree-of-Freedom Flight-Path Study computer program are outlined
below:

L. Geophysical Chavacteristics

Rotating non-spherical earth accounting for oblateness effect on alti-
tudc as well oo gravity.

Atmospheric properties consictent with latest information with flexi-
bility to permit use of other atmospheres or atmospheric variations.

Wind effects.

2. Vehicle Characteristics
Options to permit various degrees of sophistication in serodynamic data
input or output applicable to boost; interim, or re-entry configurations.
Aerodynamic date input es function of mltiple variables, such as speed,
altitude, and vehicle attlitude to be provided. Other options to be of
various degrees of refinement.
No restrictions {v small angles of motion or attitude in any degree.
Vehicle spin effects, including Magmus effects, to be included for n rpm.

Account for thrust misalignment and transient effects due to stage
separation for n stages.

Include damping derivatives and cross coupling between the various degrees
of freedom.

Include provisions for simulation of vehicle autopilot.

Manuseript originally released by authors October 1360 for publicutlion as WADD
Technical Report 60-78l. Revised and releused by authors February 196h for
publication as an BID Technical Documentary Report.

1
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Include provisions for simulation of flighf programmer

Vehicle control to be possible by aerodynamie, main.engine and/or
vernier thrust vector, retrorocket, and reaction type control.

3. Characteristics of Digital Computer Progran
Program to give time history of motlon of all six degrees of freedom.

Program utilization of variocus degrees of complexity from o dégrees
to six degrees of freedom of motion.

Veloeity inpvt and output option relative to the surface of a rotating
central body or absolute with respeect to axis systen.

Provide for performance veadout in latitude and longltude according to
standard nomenclature, and all pertinent values required in the solu-
ticn of operational type as well as design problems, e.g., range in
both maneuvering and stralght-out cases, and energy management
parameters.

Coordinate system transformation capsbility.

frajectory conirol during operation by limiting any or all three degrees
of rotation, and/or any or all three degrees of translation.

Trovision for tylug into en aerodynemic heatinpg computer program and
an interplanetary trajectory computer program, and provislon for
hendling heating limits.

Y. Program Operating Modes

The program should contain a reversible option whereby known trajectory
motion becomes the input and serodynamic date is obtained as a resuit,
as is accomplished in flight test.

The computer program which will handle this degree of problem complexity
wust, of necessity, be designed on a "unlt construction" basis such that the
individual bullding blocks may be readily isolated. In addition, to insurec
that the program will not becowme obsolete as requirements develop for the simmla-
tion of new vehicle concepts, the vasic program must be ea@sily revised. Recognizing
thet every flight dynamics computer program has certain essential parts which are
the sawme regardless of the characteristics of the specific vehicle involved, the
concept of a central program area with interchangeable subprograms has been
adopted.

This report presents the analytlcal and theoretlcal developments leading
to the problem formulation and the computer program design. In the derivations and
explanations presented, any slmplifylng assumptions or approximetions which are
made are incorporated only after the development of the more general expressions.
In this way the degree of approximation involved is made clear, and the form of
the terms deleted are specified should they be required at a later time for
specific analyses.
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2, DERIVATION CF BQUATTONS OF MOTTON S -

This section presents the derivation of the equations of motlon, of &
= body in "inertial" space, as required for use in the Six-Degree~of-Freedom
e Flight-Path Study computer program. One of the features of this program is
that problems which require motion analysis in less than six degrees of

3 freedom moy also be considered without the penalty of substantial amounts of
S null arithmetic. Consequently, alternate sets of equations are developed

B from the original relations by deletion of terms which are not required. The
equations of motion will form a portion of the computation loop which is
unaffected by the libraries of interchangeable subprograms describing alter-
nate control systems; airframe aerodynemics, atmospheres, and geophysilcal
parameters, or the data-monitoring subprogrems to be incorporated. The
severel coordinate transformations and velocity and angle resolutions, which
- complete this central portion of the problem, are described in Section 3 of
this report.

2.1 BSix-Degree-of-Freedom Analyses. - Since the equations involving the
moments of inertis, aerodynamic forces, and thrust forces are greatly
simplified if ?xgressed in body coordinates, this system of body reference
will be used. (1} fThe two basic equations which define the motion of a
body are:

F=g " () = 5 @ (2.2)

Mumerlcal analysen of these vector Y
equations require their resolution

into vector components and definition

of the scalar coefficientc. These
manipuletions are discussed in P(x,7,2)
detall 1n many toexts in mechonics
(e.g., Rcferences (1) through (8)). -
The essential steps of the deriva=- o~
tion are reviewed here, however, .
for completeness.

Iy
-
™~ /
AN Ix
f')/ B \“
y R o 4
To determine the displacement //<jf:“ ;
accelerations, consider a point P SO
displaced from the origin or coor- ik"v
dinate system x-y-2z such that the 17
vector r designates the point. 7 '
Figure 2.1 illustrates the system.

e

Figure 2.1 Generalized Inertisl and Body-
Axes Coordinate Systems

(1) An exception is made for the three-degree-of-freedom point-mass >
problem, discussed later, where it 1s found more convenient t- use a wind-axis
reference system.



Let the qrigin of the coordinate system x-y-z be displaced»£rom thé erig-n—ef -a
space-fixed coordinate system X-Y-Z by an amount and directitn given by R,
Further,_ let the eoordinate system x-y-z rotate in the X—Y—Z sp&ee aueh that the
vector, ®, defines the rotation,

Then
T = xl, + yfy + zTZ
R = Xly + Yy + 21y - (2.3)
- eI +el +ul,

The coordinate system x-y-z will be recognized as the body sres and the coordinate

system X-Y-Z are the non-moving "inertial" or Newtonian axes. The total velocity
of the polnt P is given by

= .ﬁ"l--— =X.ix+yiy+ZIZ+(x'WZ+2wy)Ix

ol

+ (y + 2w, - 2w, )I + (z - xwy + ywx)i (2.4)

T+ is more conveniaent to express the velocity of the body-axes origin in body-
velocity components than in velocity components coincident with the "lnectial"
reference coordinates. The vector R can be wrltten in any coordlnate system, so

R =V = Xy + YLy + 4Ly = x yuly+&L
and kguntion (2.)1) may be rewritten as

= xoLx + Yok Ly + 2oLy + (xP -y, pry)Ix

rgl.

S=V+
( Yp + XpWg - Ap(x)ly + (zp - Aoy + ypuk;lZ (2.5)

where the subscripts o and p have been added to distinguish between the velocity
components of the origir and the relative movement of the point P with respect to
the origin of the x-y-2 coordinate system respectively. Difterentiating Equation
(2.5) glves the relation for the total acceleration to bhe

p = [¥ - y W, + 2 wa 1, + [y + x oy - 2 wx] 1y, + (zy - Xy + Yooxl 1

X, -2 2 (w2 +ud) ( : : 1

+ [xp - yﬁ”z + zﬁ”y xp (g +wy) + yplwywy - w,) + Zp(my 4wz )] Ly
. [yp + 2x_ . 2Zf”x - Yy (wi + wg) + zP(w:’wZ - &x) + xp(wZ + wxpy)] Iy

. ' 2 2 " S -
+ [zp - QXIP + 2yﬁ“x -2, Oﬂy + wx) + xp(w,w, - wy) + yf(wx + gyl 1,

(2.6)

This acceleration relation is completely general and applies to any point on the
body. In developing the eguations of motion, the point of interest, P(x,y, z),
is the center of gravity. If the center of gravity is assumed to move, relative
to the body, along the v-axis only, the followlng siwplification can be mede.
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Ypo Fpr =0 Yps Zp Ypo ?ﬁp‘"" 0

The components Xo, Yo, Zg, 2nd Wy, Wy, Wy are more-commenly'known as u, v,‘v:
and p, q, r respectively. The componants u, v, and W are the velocltles of the
reference point on the body. Making the above substitutions gives

7)1[11 - VX + wq + Xp - xp(r2 + q'2)]

=1
I}

(2.7)

!
I

y mlv +ur - wp + expr +'xp(r + pq)]

mlw - ug + vp - 2ipq_+ xp(rp - q)]

=
N
i

In view of the [act that wost vchicles are desighed to have small center-of-
gravity travel, the acceleration and veloclity of the center of gravity are both
very suull guantitiss and maey be vwitted from the problem formuletion. If the
reference point is further restricted to be the center of gravity, then x; and
its derivatives may be omitted from the equations and the components u, v, and v
arc the veloecities of the center of grevity, In wmatrix form the equations reduce
to the following:

'—Fx U 0 -r u
Fy =1 |{v + T U -p v (2.5
F W - P 9) W

7%

It may be noted here that in the anelysis of flight-test dota, where the output
. of accelerometers, wounted away [rom the center of gravity, are used to record
the motion of the body, the complete form of Equation (2.7) must be used. It
will wiso be nobed Lhubt, uwlibwugh BEquation (2.1) states Newton's Law as the
tiwe derivative ol the mouentum, a formal differentiation of mV, assuming n
Lo be a funetion of biwe, has not bLeen performed in the derivation of iguation
(2.8). Such o formal differentiation glves

I-'=§§_I:+£1_mv
at dt

This differentlation leads to erroneous results, however, since the residual
momentum of the expelled gases has not been accounted for by this procedure (See
Reference 8, page 11l). The cquation should be

? = }71 g.i 4 .dl_'l E
dt dt

il
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when the residusl momentum of the expelled mass_is Juﬂzpaxly‘ge Heres oo
is the velocit of the expellsd mess With respect to the continulng bhodys-- The- -
contribution 7 ¢ is the momentum-change portion of the thrust and is 1ncludeu in
the summation of extermal forces.

1moe

There are additional accelerations produced which are unique to configura-
tions which have very large fuel-flow rates and which have the thrust nozzle
located a considerable distence frowm the center ol gravity. These accelerations,
linear and angular, sre the so-called jet-damplng contributions. The term is a
. correction to accelerations computed on the basis of only the externally applied
S forces (or moments) and accounts for the moment of momentum which is iamparted to

the fuel by the pitching velocity of the body. The derivation of this contribu-
W tion is considered in greater deteil in Appendix One to this report. The
o principel contribution to the equations for linear acceleration are in the y-and
T z-direction and have been added to the expressions of (2.8) to give the following

+ § e R ot et £
1 H

5 - result.
] r"
! Fy u 0 -r q u 0
; Fyl =Mv| + |~ 0  -p vl + 2 rly (2.9)
. a .
’FZ W -g ) 0 Y +“2MmMaql, |
| z .

The relations expressing the rotational motion are obtained in o straightforward
wenner, Thce componentn concidered in this analysis come from three basic sources:
the time rate of change of the moment of momentum, the gyroscoplc moments which
arise from the rotnting mechinery of the vehicle, and the externally applied
moments, The moment of momentum of a body (or angular momentum) about its centn
of gravity, in terms of its components, is given by

Hyx Iyx ~Ixy Ten |19

H, | = | -1y I -1 w
Y Y Y ye Y

Hy, “Lyz 'Iyz iz Ya

or, since W, Wy, and W, are p, g, and r, respectively:

—
1 3

H = [Ty - Teyd - Il 1+ {—Ixyp + 1,9 - Iyzr] Iy
+ [-I,p - Tyzq + Iggr] Iy (2.10)

The required differentiatioﬂ'of the moment of momentum glves

*The time rate of change of inertia noted here refers to that change occurring
at constant mass only.
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B o= [Tgpp + I + (Tpy - Iyy) ar - Iy.z:_(q"2 - ?) - Iyz{r + pa)
- Ixy(q - pr) - Iy,r - Ixyal 1y

2. Pa) - Ixy(p + qr)

3
—
=

.
yyd + Lyya + (Tyx = T55) Pr - Igu(r

- Iyz(r - pq) - Ty ~ Iyzr] Iy

# [Ipp0 + Tpgr + (I - Tp)pa - Tp(p® - ) - I,(q + pr)

- Txe(p - ar) - Iygp - Tyzal 1, (2.11)

It is the general praectice at this point in the derivation of the equations of
motion to assume that the refercnce axes of the aircraft are principal exes and
that the moments of inertia do not vary with time. This conveniently eliminstes
the products of inertias and the tlme derivatives of the moments snd products of
inerties, respectively. However, it is desired to have a more general applicability
then this for the computer program heing develcoped and these terms will be retained.
The inclusion of the time derivatives of the lnertia implies that oll moment of
momentum has been reuoved frow Lhe muss being lost by the body. This assumes

that the geses have no swirl atter they have lelt the budy. OStaging oand dropping
of discrete masses from the body introduce disconlinuities in the mass and inertia
properties of the body. The solution must not proceed across these discontinuities.
Therefore, the integration of the equutlions of motion will be interrupled when mass
is dropped and automatically re-established immediately thereafter (See Sectlon

b.b - Stages and Staging).

The jet daumping contribution to the expressions for angular acceleration
(frow Appendix One) is

. 2— » 2...
AMjy = - pml Ix ~am1l,~ 1

-
ro

7! 2.—.
y—rmln 1,

The expression for the total angular acceleration due to the time rate of change
of the moment of momentum, including jet damping, 1s conveniently given in wmatrix
form as shown on the followling pege:



L Lox  ~Ixy Ixg é iKX_'Tﬁllanfixl e ,fé;g; R
M| = Iy Iyy -Iys a |+ |-ty bl eIy Al
N Ixa Iyz  Ig : 'ixz "iyz '*‘:.rzz""’.ilr‘\2 r
O er q Tox -Ixy -Iys »
+ r 0 =p quy Iyy "lyz q
-q p O -1, Ly I,z r (2.13)

The torques due to precession and changes in rotatlonal speed of rotating machinery
sboard & vehicle which is free to gyrate 1n space can contribute significantly to
the angular accelerations which the vehlcle experiences. Agppendix Two of this
repori derives the torques generated by the precession of rotating machinery in
general terms and simplifies these relations as required for the solution of the
fcllowing problems.

(a) The motion of an aircraft powered by an cngine with & rotating mass
vwhich is fixed in 1ts orientation with respect to the reference axis of the

alrcraft.

(b) The wotion of an aircraft powered Ly a rotating-mess engine which can
ve rotated in a plane parallel to the plane of symmetry {e.g., & convertiplune
which is in the transition from vertical flight to forward motion or vice versa).

(c) ''me motion of a satellite iu which motors are being operated (by the
proper selection of reference axes).

The gyroscopic wmoments due to the rotationsl rates p, g, and r and the angular
momentum of the rotating machinery are upproximated as follows:

ALp = =Ixp Wp(q + Op) sin O
DMy =  Iyp wp(p sin 6, + r cos o) (2.1h)
ANy = =L (g +6,.) Wy cus 6,

The complete rotatlional equations of wmotion are, therefore, from Zquations
(2.11), (2.12), and (2.13)

M = LIy + ML, + NI,
in which
2)

[
]

Ixp + Iyxp + (Izz - Iyylar - Iy (g% - r
- Ix’z,(r + pg) - lxy(‘.l ~ pr) - Iipr - Ixyq

. ;? .
- L, - I,.@ 3 i
R Iyr¥y (g +6)) sin 6,

i
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yyd * (I = Ipg)or = Ixz(r2 - PE).

- I (p +qr) - Iyz(x - pa) - Ix P - Iyz

=
1

_’Iyyq + I

- qynth + L 9(p gin @, + r cos Op)

. T 2
N o= L%+ I,r+ (Iy - I,)p Ixy(p - %)
- Igu(p - gr) -1 (q +pr) -I,p-~ lvzq

xr(q + Gr) w.co5 Gp

These relations, written in matrix form, are:

’ 2
L Tyx -IXy “Iyp D I.,.-ml 'Ixy “Iya P
» . N N 2 3
M| o= -Tyy Iyy  Iyg G|+ [ Tey Lyy- Mg~ -Iy, q
. » . . - 2
N “Iyz  Iyz Lo r Tya Ly 2z~ My |{T
0 -r g Iyx  “Ixy Ixg || P | -Ixéor(q + ©,.) sin on
+ 1 TP Tyy  lyy  Iyz a| + | I, (psin 6. + r cos Or) (2.15)
- Ly Ty, Tpplr | “Txr®y (4 + 0p) cos o,
constitute the general six-degree-of~freedom equations
‘n the computer program. The program iastructions
" ~ertain combinations of terms as followvs:
for the case where the body is inertially
fyz which are zero when the x-z
- g : : - of change of inertia, products of
inertia, <.
(d) The g, .- : _ rotating wachinery.
{e¢} The jet dan, . .- forces end wowents.
2.2 Three-Degree-of-~b.:: .ongltudinal Analyses -~ Three-degree-of-fresdom

analyses may be used for longl:i:iiial dynemle stability investigationc and tor
simplified performance work where the latersl motion is zero. For the assumed
motion the following constraints exist:

Fy =0 L =20 N=20 v =20 p=0 r =0
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These resirictions require the motion to be in the equamorial plane,when the motien e
is over a spherical planet. The equationa of motion, (2 9) and &EJIS)iffﬁdﬁge“to e

Fy =M (2 + wq) .

Fp = M (v - ua) + 2 7l | (2.16)
- . ' 'y 2

M = qu + Iyyq - Maly

These equations 4o not depend on motion in planes other than in the x-z plane end
e therefore require no additional constraints, except that gyroscopic wowents must
. be assumed to be zerc since such moments are not compatible with the assumption

c of the reduced degrees of freedom.

2.3 Three-Degree-of-Freedom Lateral Analyses - A three-degree-of-freedom
- problem option is included for analyses of lateral stability problems and preliwminary
) develorment of the lateral guidance coumputer loops. In this problem the motion will
be computed within the bounds of the Tollowing assumptions:

Py = 0 F, =0 M =0

The general equations of motion, (2.9) and (2.15), reduce to

Fy =‘m(\'r+ru—-Wp)-’c'37;|rly
L = Iyxb + Iyyp = Iypr + IerQ + Iypr

- Tgar = T vly? (2.17)
R S S LeyB° - Lyzpr - I,p

= Iygzp - ﬁlrlnz

This set of equatlions 1s not independent of the motion im the x-y plane due to the
velocities u and w appearing in the Py equation. Hence, it will be necessary to
apply an additional constraint that u and w are specified functions of time. GCyro-
scopic moments must alsc be omitted from this problem.

2.l Three-Degrece-of-Freedom Trajectory Analyses - A three-degree-ol-Ireedom
point-mass problem option is iucluded o perult performance analysis and brajeclory
computations of aircraft in three-dimensional space. Since the angular rotation
relations are omitted in this option, some difficulty is experienced in obtaining
the body rates p, g, and r required in Equation (2.9). This difficulty is elimineted,
hovever, if the body axes formulatlion is abandoned in favor of a plsnetocentric sxis
system oriented with the X, - Y, axes in the equatorial plane and the Zg-axis through
the South Pole. This coordinate system ls sslected because of the simplification it
affords the six-degree-of-freedom problem for the flat-earth option. The Xe-Ye-se
axls system rotates with the earth, and the Xq-axis designates the longltude of the
body at the instant of starting the problem. With this coordinate system, the
equations of motion can be obtained directly using Coriolis' Law which states:

F =m (Er + Em + EEPXV) (2.18)

10



where By 16 -the scceleration & particle would have if thé pldngt ‘were #ta .?-““'f"‘*h

and. am is the acecelerdtlon a particle woulgd bave due %o the planetd rotation.
V is the Corialis.agceleration, where ¥ is the vel ocity with respeet to th.k S

planet (i.e., with respect to the roteting coordinate system) and @ is the. SIS

planet's (coordinate system) rotational veloeity. It should be noted, however,

that because of the menner in which the coordinate system has been established.

(4Ze is through the South Pole), the vector mst heve a minus sign associated

with it in the derivation which follows. Expanding this equatlon in the Cariesian

coordinste system selected, the equations of wmotion are:

A i

ISR

A
i

= Fre = m (Xe - XeW? + 2 Youy)
! o fYe = m (Yo - Yeui? - 2 X 0p) (2.19)
; ; Fre = m (Zg)

Force components in the wind exes are required for use with this coordinate
system. The force contributions due to jet dawping are omitted in this motion
since the rates p, q, and r are undefined.

2.5 Two-Degree-of-Freedom Trajectory Analyses - For a two-degrec-cf-freedom
trajectory analysis, the side-force is zero. This constralnt is siumply imposed by
climinating the Fze equatlon in (2.19). This requilres the trajectory to be in the
equatorial plane. The equetions of uotion are:

¥ R

Fy, = M (Y - Yempi- -2 xe p) (2.20)
2.6 TFlat-Planet Analyses - In certaln cascs the contributions of a planet's

rotational velocity and the centrifugal effects of thie body's wotion about the

planet are truly negliglble and only complicate and lengthen the computation

(evgg. 5 the dynamic behavior of & mlssile during the launch phese, or take-off and

landing phases of aircraft flight). Au additional set of reduced-degree-of-freedom

options can be obtained by elimlnating the planet's rotational rate and revisiug

the cocrdinate transforwations required to record the motion. The equations of

motion are unaffected by thls option, however, and a turther discussion of flat-

plLanet analyses is more appropriately confined to the descriptions of the coordinete

J oo

transformaticns (See Section 3.1).

1L
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Thig section presents a dgagxintion of 1
for the Six- Degree—of-Freedom Flight-Path Stu mp e
transformations required to relate the varlous parameters of the” compu the
geversl coordinate systems are alsc derived. The coordinate transformatiens re-
quired in the program way be categorized as follows: . L

(1) Trensformetions inherent in solving the basic equations of motion,

(2) Transformations to provide input data to the guldance, autopilot,
and flight-plan programmer simulations.

(3) Transforwations to present resdout data in the most desirable form and
suxiliary transformations which may be required for the definition of certain
specir® paremcicra. These transformations may be deleted from the program when
they are not required.

(4) Traansformations to provide input date to connecting interplanetary
trajectory programs.

3.1 Coordinate Transforuaticns for Raglc lLquetions of Motion - Yhis section
desaribes the coordinate systems and derlves the related transformstions under
Category (1) above. The coordinate systems and transformations required to des-
cribe the rigid airframe motion in six degrees of freedom are modified for use
in the optional reduced-degrees-of-freedom problems. The coordinate transforma-
tions which relate the aerodynamic angles and velocities to ground-referenced
velocitices In the preccence of winds are alco presentoed.

NP
3.1.1 Body-Axes Body ——
Coordinates - The voordinates _, x ~~.

equations of motion
(Section 2) are soived
in a body coordinate
system (see Figure 3.1).
The origin of this system Z
is at the center of gravity

of the aircraft with the x-

axis along the geometric
lonpitudinal axis of the Y
body. The positive direc-

tion of the x-axis is from

the center of gravity to

the front of the body.

The y-axis is positive to the

right extending from the

center of gravity in a

wvater-line plane. The

Ve
il Geocentric
ilzon Coordinates

[ _Inertial
Coordinates

Figure 3.1 Relationship Between Inertial,
Geocentric, Local-Geocentriec,
and Body Coordinates

12



z-exis. £Orus . &-wlght-handed orthogonal systew. . .This cobrdinate system Hﬂsu'_,
hecausge. inenmia-charaetnriatics are_thus_made Lndependent of attitude.' '

Accelerations and velocities computed in the %-y-z body axis mst bé reihmgd
to velocitles and accelerations referenced to a fixed point cn the surface of the
planet to (a) describe the motion whiech a fixed observer would sehse, and {v) to
compute the aerodynamic forces om the body immersed in an atmosphere whiech essen-
tielly rotates with the surface of the plancst (except for winds which are referencod
to u point on the surface of the plenet).

3.1.2 Inertial Coordinates - The resolution of the body-axes motion. to the
motion referred to the surface of the planet will always be made through the
intermediate coordinate system assumed to be the "inertial” axes(l). The assumed
"inertial" coordinete system selected hus as its origin the center of the planet
and 1o oriented so that the X-and Y-oxes are in the equatorial plane with the Z-
axls coincident with the polar exis of the planet and positive toward the south
pole. The angular orientation of the inertlial axes remain fixed (i.e., the axes
have no further rotation or linear acceleration) with the X-axis established by
the initial instenteneous longltude of the body. The positive direction of the
Z-uxis was selected so that the inertiel coordinate system would couinclde with
the coordinate system for the fiat-planet options discussed in FParsgraphs 3.1.3,
3.1.9, and 3.1.10, This will permlt the use of the same resolutions for some of
the coordinate transformations in both the rotating oblate-planet problems and
the rlat-planet options(g). I+ should be noted that this coordinate system is
used only for computational purposes in the program. A resolution, explained in
Favagraph 3.1.4, will describe the body position in the customary spherical coor-
dinsbes. Flgure (3.1) aids in the descerlpilon of Lhe coordingle systems zdopt:d.

3.1.3 Directlon Cogines ~ The direction cosines relating the body x-y-z
sxes_to the inertlal coordinate system X-Y-Z are obtalned in the follewing manner.
Let lx, ly, L. be unit vectors azleong the body oxee, X, ¥, 2, respectively, and
let 1x, 1y, 1z be nnit vectors along the inertial axes, X, ¥, %4, respectively.

The direction cosine matrix relating these two sets of unit vectors will be of
the Torm:

Tx L, 1lp 1y Ty
Jy = moomp w3 Ly (3.1)
Tz |u mp g 1,

(1) An alternate inertial axis sysiem ls discussed iu Scction 3.4 which
is normally sssumed for certain astronomical work.

(2) This system is most convenient for the six-degree-of-freedom flat-
planet option but not necessarily the wost convenient for the other reduced-
degree-of-freedom options. The cumplications incurred in the latter case have
been accepted, however, as will be explained in Paragraph 3.1.7.

13




,‘pPéﬁfbfmihg the matrix multiplicstion indicated glves:

= 11y + 12Tir + 135:2. - T

[
®"
¥

= mlIx + mQIY + m3IZ (3-2)_

1
e
!

lg = “1IX + naix -+ II3IZ

The derivatives of Ix, Iy, 1, with respect to time in terms of their components
. in the inertial system are found by aifferentiating Equation.(3.2). These
= derivatives sre:

. Ik = llix + lgif + 13—2
= Iy = mly + mply + m3ly (3.3)
- Tz = nyly + n2ly + n3ly

The derivatives of ig, Ly Iz with respect to time are dcpcndent only on the
change 1n dirceticn of the wnit vectors. Therefove,

Ix = Wxly = rly - gl
ly = Wxly =pl, - rlg (3.4)
Ty = 0xl, = qly - ply

€1
1

where ply + aly + rly

Bquating the relations for 1y from equations (3.3) and (3.4):
llIX + lgTY + 13IZ = rIy - diz
Substituting the relationships for Iy and IZ: respectively, gives the reletion:

131y + 1ply + 131y, = r(mlx + mply + m3fz)

- - _ (3.5)
- q(nllx + noly + n3lz)
By using the component properties of a vector, the relations
Ly = 7w - g (3.68)
ig = rm, - qnp (3.6b)
i3 = rm3 - gn3 (3.6¢)

are obtained from Equation (3.5).

Performing- the seme operation for the 1, and Iz components defines the time
derivatives of the remalning direction cosines. These are:

1h



my = pnp - rlp - (3.6e)
&3 = pn3 - rlg (3.6£)
ﬁl = gl - pmy . (3.6g)
np = qlp - pitp (3.6n)
53 = qlg - pog (3.61)

The nine Equations (3.%5a) through (3.6i) ar+ ntegratcd to obtain the
instanteneous values of the direction cosines. ‘inpir methed of calculating the
direction cosines has been selected instead of the usual svaluation by means of
the Buler angles because, regerdless of the order of rotation selected, there are
points at which cextain Buler angles become,undefined. The dirsction coslnes
evaluated by this method are slways defined(3). 'ha methnd by which the ortho-
gonelity of the directlion cosines is waintained is deseribed in Appendix Three.
The Buler angles way be caleculated from the dire ‘rines 1f deslred; however,
they are not required for component resolution.

'Yhe couponents of inertial velocity in the body coprdinate systea, u, v, and
W, will be resolved into velocity components X, Y, and. Z in the inertial coordi-
nates. OSince components of inertlal veloclty are kacwm in body cocrdinates, a
vesoiution of components uwsing the dlrection cosines glven in Equation (3.6) will
oive component:s of inertial velocity in the incrtial coovdinate system, as follows:

'x i 'll iy ny u
i Y = 1s mo Iy \ (3.7)
Y 13 m3 n3 , W

3.1. Geocentric Coordinates - The components of velocity in inertial coor-
dinates will be integrated and the displacements resolved into the geocentric
coordinates of latitude, longitude, and distance irom the cenier ol the planet.
With the aid of Figure (3.1), several pertinent geometric relationships can be
obtained. The angle, B, represents an inertial longitude which differs from the

——

f -

(3) It is recognized that nine integrations are involved in tlic present
method ot computation Lnsiead of the three that are normaliy seguired when the
Euler-angle rates are integrated to give the Euler angles. However, a cocrdinate
transformation is requlred to obtaln the rates, and the sines and cosines of the
angles wust also be computed in the usual direction cosine computation. The
machine time required for the two methods of computation is compaerable.
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planet longitude change, (0L - 01‘..0) , by the amount w (¢ is ‘the angular
rotational rate of the pla.net.) The inerbiel sng..e fs given»by-

B = 'ra.u-l(g) | A (3. a)

and the instantaneous geocentric longltude of the body 1s:

oL = 6Ly - B ~ wg (3.9)

The geocentric latitude of the vehicle, ¢L: can also he expressed in terms of
! inertial coordinates. Referring to Figure (3.1):
b /
H : : -2
T = 8in! | e
. & Y+ B (3.10)

E o and, the distance from the center of the planet is:

S Ty (3.11)

3.1.5 Local-Geocentric Coordinetes - To deseribe ‘the motion oif the body
relative to the planct, & local-geocentric-horizon coordinete systewm is ewployed.
The Zg~axis of this system is along a radial line which passes through the center
ol gravity of the body and is positive toward the center of the planet, The Xg-
axls of this cystem is normel +o the 7, -axls, and is positive northward; and V.,
forms a right-handed system. TFigure (3.1) shows thc relation of this coordinafe
system to the other systems assumed. The dircction coslnes relating the ovienta-
tion of this system in lnertial space will now be developed.

To Locate the Kg=¥ =7, axes vith

TR L e 8 o it S ik 1 i

respect to the X-Y-2 ax@s, first rotate
about Z by an angle (130° + B) and then

X rotate about Yz through the angle (90°-
#1,). The first rotation deiiuss the
intermediate coordinate system shown
180° + B _L in Tigure (3.2). Using the matrix
methods of Reference (9) the transfor-
mation is given by:
Y -
\ Ixt| | Cos (180°4m) Sin (180°+8) of| Ty
N i S -
Yy Ty.| =|-Sin (180°4B) Cos (180°+B) o||Ty
(&)
v 1, l 0 G 1|1z,
X
or
Figure 3.2 - Intermediate Coordinate - . =
System Transformation From 1xs -Cos B -Sin B 0 1x
Inertial to Local-Geocentric — —
Coordinates lYg =| Sin B -Cos B - O lY_
IZ 0 0] 1 TZ, (3'12)
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The second rotation 1s shown in Figure (3.3). The transformstion matrix for the
second rotation is given by:

Ix, Cos (90° - gr) 0 ~Sin (90° - gp)| Tk’
Ivg|= | © 1 0 1y, .
o IZg Sin (90° - #f) O Cos (90° - g1y o & oo
.- wl =x'
- or Do
) 1X, Sin g, 0 -Cos g, l Ix N
= _ T ERE
Tyg | = 0 1 0 Ly, (3.13) | ‘zg
3 T ' )
12, Cos i, 0 Singy | |Tz | z

Figure 3.3 - Final Rotation
in Transformation Frow Inertial
To Local ~-Geocentric Coordinates

In this analysis, a positive rotation is defined in the same sense as that
adopted for vector crocs products in a ripght-handed system. That is, a positive
rotation about tho z avic ceeurc when the x-oxic retatos dnto Gle y-axls; podillve
rotetion about the x .axis when the y-axis rotates into the z-axis; aund positive
rotation about the y-axis when the z-axis rotates into the x-axis. The interme-
dinate coordinate system X', Yy, 2 will be ellulnated according to the methods ot
successive rotation, Reference (9). The complete transformation is given by:

Ix g | Sin g1, O -Cos gL ~Cos B -SinB 0 Ix
1yg| = o 1 o SinB ~Cos B 0 Ty | (3.14)
1z, | cos gy, ©  sin g c 0 1 iz

vhich can be reduced to the single transformation matrix.

1x, -5in @y Cos B -Sin fy 8in B -Cos Py | | Ix
Iyg = | sin B -Cos B 0 Ty {3.15)
Izg -Cos #;, Coc B -Cos @, Sin B Sin fy | | 1 |
The direction cusines will ue defined as follows:
- g | [ 01 & || L
Iyg| = [t2 Ja ke || Ty (3.16)
izg i3 43 k3 Iz

17



i
i
;
;
[
|

where the i's, j's, and k's are defined in Equation (3.15). {F9§f§$§@§$%3 .

J1 = -Sin @, Sin B

The resolution of inertial velocity (in inertial coumponents) to locel-geocentric
components of surface referenced velocity is cbtained by the foliowing menipule-
tion. Let R be the displacement of the vehicle in ineitial space. Then:

RN
llliiaiivailih

R = XIx + Y1y + 21y (3.17)

th%éud”

end the inertial velocity mey mlso be written with respect to the local-geocentric
coordinates as:

- = ¢ -
+ W, xR (3.18) o

e
i
gt

where Sﬁ/St is the velocity observed in the moving coordinate system Xg-Yg-Z
aud wy L5 the engnlar velority of the planet. The observed surface referenced

VELOCLLY Lo,

and
wp = -wp 1y

The anpular veloclty vector will be resolved into cowponents in local-pceocentric
coordinates as follows:

wp = wy, Cos #r Ixg - wp Sin fr L4 (3.20)
Writing the displacement vector in local-geoceniric coordinates,

R=-R 'izg (3.21)
The required cross product Ep % R is:

;p xR = wp R Cos #, ifg (3.22)

For convenience, the unit vector i&g will he resolved Into components in the
inertial coordinates.

lxg=izix+j2Iy+k21-Z
- - (3.23)
= Sin B 1y - Cos B ly

From the geometry of Figure (3.1) the relations:

R Cos i - \ X2 + Y2 (3.24)

18
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Cos B = X (3!26)
X= + Y

are obtained. Substituting Equations (3.23) through (3.26) into Equation (3.22)
gives the inertial components of the required cross product as:

= GP xR = (AJPY -ix - wpx ly (3.27)

= Substituting Equations (3.17), (3.19), and (3.27) into equation (3.18) gives:

XIx + YTy + 21z = Xglx, + Yalvg + zgizg + wp¥Iy - wXly

or collecting like teruws,

(X - wn¥)ly + (1 + 0 X))y + 270 = Xy, + Y 1V, + %elz, (3.28)
) - & - O e o © - -

Cenverting the wnlt vectors Ik, Iy, Tz to components in the moving system by using
the airection cosines determined in Equation (3.15), and equating components in
the moving coordinate system, glves the following relationship.

g i, 9 kl l X - UJPY
Py, ! = iQ Jo ko | Y + (.'.\PX (3.29)
Z& 13 ;‘3 !§3 I l Z

One other coordinate system is used in the polnt-mass reduced-degree-ol-freedom
operation of the prograwm. This system will be discussed and the transformation
derived in laragraph 3.1.10.

3.1.6 Inverse Transformations - The preceding development completes the
caleulation of planet-referenced velecities and displacements. Several resolu-
tions are necessary, however, to transforu inforsation in planct-referenced
coordinates back to body coordinstes., These transformations will use the inveise
of the direction cosine matrices previously derived.

Gravity components, calculated in the geophysical data subprograms, are
considered inputs to the ceniral progrem. These components are normally specified
in local-geocentric coordinates and must be resolved into components in body coor-
dinates. The first transformetion will use the inverse of the transforuation in
Bguation (3.15) to resolve local-geocentric gravity components into inertiel
gravity components.

[LREX B

X i, 12 i3 gxg
gy| = {J1 J2 I3 0 (3.30)
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nates with body eoord_natea was derived ‘Previously -and is glven 1in Equation .
The required transformation is, therefore:

Ex L 1, 13 ex
gy | = |m my mg 8y (3.31)
&y m e O3 &,

The direction cosines are defined by the relations of Equation (3.6). A sequence
of resolutions similar to those leading to Egquation (3.3l) is required to resolve
local-geocentric components of wlnds into body-axes components. To obtain inertial
components of wind the inverse of Equation (3.29) applies.

Y - n ina r

AT UPY i 1 1i 2 1_‘) XW

Yy +uX|=]d;p Jdo I3 Yo, (3.32)
| 4w T T | 75wl

The components w,.Y end -w X must be added to the result to obtain inertial compo-
nents of winds. "Resolving inertial wind components to body-mxis cowponents
requires the same dirvection-cosine watrix uscd in Eguation (3.31), and the body

components of winds ere:

¥ 14 1 B

W i 2 ]3 Ny

vyl =]my my owm Yo (3.33)
Wy n, n, 13 Zyy

The body components of airspeed are determined by subtracting the body components
ol' wind from the body components of velocity.

The body components of alrspeed will be used to compute the angle of attack
and sideslip.

Q
|

Tanﬁl(w - wﬂ> (3.34)
U= Uy

Tan'l(v - VH) (3.35)
u =- uw

w
{

The definitions of angle of attack and slideslip are consistent with the aerodynamic
data normally obteined from wind tumnel tests of sting-wounted models because of

the wsuuer ik which the sting mey be moved. The eorresvonding transforwations from

wind axes to body axes are given as Section 3.,1.,11l. If aerodynamic data as obtained
frou turntable-and-gtrut mounted models are uced, &n alternate definition may be
required depending upon the procedure used in data reduction.
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- 3.1.T7 Reduged-Degree-of-Freedom Analyses Opticns - The following-pare~
graphs describe the coordinate transformationd Pequired to edcount for fhe . = - -
motion of the body when the program is operating in several reduced-degree-of-
freedom modes., From a program econdmies standpoint, it is more convenient to
solve the equaticns of motion in vehicle body axis (with the exception of the
point-mass option) and revise the coordinate transformeticns than to rewrite

the equations of motion because the limlted-uotion transformetions are qulte
simple. In general, however these transformations can not be obtained simply
by deleting terms from the unrestricted-motion tremsformetions because the
constraints imposed by limiting the motion imply certain planes of cperation.
For example, the three-degree-of-freedom longitudinal enalysis is obtaincd by
excluding, among other things, the side force, which includes sidc-force
components of Coriolis scceleration. This restriction can be fulfilled only
when the motion is in the equatorial plane. When the restricted plane of motion
is recognized, some of the required transformations can be calculated from the
genersl transformations by suitable substitutions.

3.1.8 Three-Degree-of-Freedom Longitudinal Analyses - The three equations
of motion involving the summation of forces along the x~ and z-hody axes and
tha ecummation af mnments Aahout the v-axis are solved for the translational
accelerations O and w and the angular acceleration 4. Integration of these
guentities ylelds the components ol inertial velocity u and v and the piteh
rate q. Tntegration of g glves the pitci attitude with respect to the inertial
X - Z-axes.

Plat-Tlanet Teohiesn - The inertial coordivates in the flat-planet problew
ere the Xg-dg elevation~-pLanc Coordinates. verouity components in the Xg-4
coordinate system may be found by direct resoifution through the angle ¢ which
is obtained by intsgrating q. Yhe direction cosines relating the bedy and Ly-7g
coordinates are:

/-X

. ,////\9
Xg Cos © Sin @ X > Xg
L]

-5in © Cos © z

Z

[ R

g
The velocity may be resolved using the same transformation, so that
Xy Cos @ Sino | I u
= | (3.37)
Z |-Sin 6 Cos ® | | «

Yositlons in the Xp-Z, system are then determined by integration. Coamponents
of wind and gravity afong the body axes are resolved using the inverse of
Equation (3.36). For winds:

Uy Cos © -8in 0 || Xgy

= . (3.38)
W Sin @  Cos © || Zgy




The Lody components of airspeed may be calculated and the angLewgﬁ_qgggnknggmpted
as in hquation (3 3h) e

In the flat-planet problen, gX = zero And gzg = Brese Therefore, the_body?

components of gravity are:

By = Bpep COS ©
(3.39)

By = ~Bper Sin ©

Rotating-Planel Iroblem - A three-degree-of-freedom longitudinal problem
wlth a rotating planet must be confined to the equatorial plane in order that
all components of Coriolis ucceleration are included in the egquetions of motion. -
This means that the coordinate system used in this problem is the X-Y inertial P
axes in the equatorial plane. At time equal zero, the vehicle lies on the X-

inertial axls. The inertial angle B is esqual to O, - o - w t, as in the six-
degree prorlem, and may be expressed as a function of inertiaf displacement:

B = Ten-l () (3.40)
\#/
The angle I locates the local-geoccntric-horizon coordinates which will be
referred to as the Yb—Zg coordinates since Xg is not necessary in this problem

(see Tigure (3.4):

//—\\

Figure 3.4 - Relation Between Body Axes, Local-Geocentric,
and Inertial Coordinates for Motion in Equaetcoriel Plane
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The direction cosines relating the inertial axes X - ¥ end the body axes ¥-z may . . i
be determined by rotating the X-Y-Z system about X through 90° to define the : o E
coordinates, X-Y¥j-%Z;, and then rotating this system through @ to reach body
coordinates. The transformatlion is derined by:

X X
y = - 90° Y (3.41)

b4 X =
b VA

or, substituting the individual rotation matrices,

X Cos® O -Sind{{ 1 0 0 X

y! = 0 1 0 0 Cos 90° Sin 90° Y

z Sin® 0  Cos & 0 -Sin 90°  Cos 90° || Z )
LIe LOBrLLEL angle o is ;tq, av + 9. = 307, Tus uiicuuiun \..uuiuuu A b UV

and inertiasl coordinates®are glven by the elements of the resulting watrlx.

X Cos & Sin® O X
yl= 0 0 1 Y
v, Sin @  -Cos ¥ 0O 7 (3.42)

Expending the transformation

x = X Cosép+ Y Sin©
y = 4
z = X Sin® -~ Y Cos @

But Z = O since the motion is restricted to the XK-Y plane and the requlired trans-
formation reduces to:

X Cos & Sin® || X
z Sing -Cos @ |l Y (3.43)

Inertisl components of inertial velocity maey be found by using the transpose of the
transformation matrix Bquation (3.43)

(3.44)

Because positive rotations were used in Equation (3.1+1)_, the resulting body-axis
orientation is for a norwmsl upright easterly [light. To obtain the proper orienta-
tion for a westerly flight, the rotation about the X-axis is negative and Equation

|.<-



(3.41) vecomes

§ y | =@ []-o0° || )
- Y X
z Z (3.15)
; Equations (3.43) and (3.44) thew become
’ x Cos & Sin o X
2| |sime  scosel] x (3.146)
v, -
l ¥| |coc@ -Sin@ v
i [ % i Sin @  Cos & ' ’ W (3.47)

ion for each fransformation may be obtalned for both easterly end

A g 1
n diiget 4V

19_-!:
westerly flipht by incorporating the constant Kg, as follows

) x
;
! 7

Cos © Sin O X
i oSin @ K Cos @ ||Y (3.48)
i
X Cos @ Kgbin @ n
o Sin @ K Cos & ||w | (3.49)
where
K, = +1 for easterly flight
Kg = 1 for weslerly Ilight

The resolution of inertial components of inertial veloclty to local-geocentric
components of planet-referenced veloclity is obtained by setting ¢L = 0 in dquation
(3.29). The transforustion becomes:

Xg | o 0 -1 X - w¥
Yg | = Sin B ~-Cos B 0 Y + wy, ¢
é- I ~Cog B -3 7 I
i Zg | | -Cos B Sin B 011z |

This may be simplified to a single-plane transformation by deleting ).(g and Z in a
manner similar to that used to derive Equation {3.48).

2L



T local-geocentric components.

Y, Sin B -Cos B |

&

DS

)

}.{w - WPY

-Cos B

Sin B

4

-5in B

2.50), and are

-Cos B

=
Yy + wpX =Cos B -8in B

Xy Sin B

Y, | -Cos B

-Cos B

-Sin B

X - WY

1Y ¢ wX

Yg,

Z &w

W

Z By

YGw + wa

(3.50)

The inertial components of winds are determined by using the transpose of the trans-
formation watrix of Equation

(3.51)

The terms wPY and w_X are inertial compoaents of the velocity due to the planet's
= . rotation, It willPbe convenient to resolve this rotational velocity component to
This operation may be verified by substituting

Bquations (3.17), (3.19), and (3.22) into (3.18) and comparing components.

(3.52)

The Lody components of winds are requlired and may be determined from the inverse
of the transformetion matrix- of Bguation (3.49).

Uy

|

Cos ©

Sin 'G' }'(w

gSin € KgCos O I ifw

(3.53)

The resolution of wind cowmponents from local-geovcenbrice to body coordinates may
be accomplished by combining Tquations (3.52) and (3.53) according to the method

of Reference (9).
The traunsforuation is:

U.w I

o |

or

Wy

which simplifies to

Uy

[}

Wiy

Cos &

Sia

Sin B

-Cos B

| o + 7]

Sin@ -Cos & -Cos B -3in B l Zfsw

(Cos # Sin B
-Sin @ Cos B)
(5in ¥ Sin B

+Cos & Cos B)

5in (B - ® )

Cos (B - @)

(-Cos B Cos &
-Sin B Sin @)
(=Sin © Cos B

+Cos ¥ Sin B)

- Cos (B -%)

Sin (B - @)
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From Figure (3.4) the following relationship between @, @, and B may be written:

90°

KUB‘+ @ - ini

e

90° - K (B -@ ) {(3.5%)
Therefore:
Sin 6 = Cos (B -9 )
Ky Cos @ = Sin (B -9) (3.56)

Substituting Bquation (3.56) into Equation (3.54) and incorporating the factor
Kg as defined for Equations (3.48) and (3.49)

Uy K Cos Q@ - Sin ©
v, K;Sin @ Cos © (3.57)

Comparison of this equation with Kquation (3.38) suggests that the same wind trans-
Tormation matrix may be used for both rotating and flat-planet three-degree-of-
freedom longitudinal problems. The component wyR must be included in the case of
the rotating planet, however, to ensure that the vcector defined by the transtormed
components is the same vector as described by the original components., The local
Fuler angle © then 1s the only attitude angle required for resolutionsg in the
three-degrec~of-freedom longitudlnal analysis problem. The angle of attack is
computed as in Byuation (3.34). The component resolution of gravity tor the
rotating-planet mode of operation of Uils problem is given hy “quation (32.39)

sinece g is also zcro in the equatorial plane.

3.1.9 Three-Degree-of-Freecdom Lateral Analyses - Three-degree-of-frecdom
leteral analyses are often performed in the design of alrcraft, autopilots, and
guldance computers on the basis that the lateral and longitudinel motions are in-
dependent of each other, Although the informatlon obtained from such an analysis
is counsidered guite valuable, certain inconsistencies are created in the mechanics
of solving the problem. The three-ényree-of-freedom lateral motion 1s not defined
couwpletely by the three accelerations considered, as noted in Paragraph 2.3.
Therefore, the motlon calculated is treated as a perturbation motion. The assump-
tions made concerning this motion are:

(a) The latersl displacement from a given straight-line track is due only
to the velocity imparted by body side-force accelerations. The displacements
from the reference line due Lo the axial velocity and yaw mngle ores neglected.

(b) The center-of-gravity of the body is assumed to travel in the plane
established by the motion described above, Tne vertical and lateral displacements
due to the sinking velocity and the roll attitude of the body are neglected.

The coordinate systems and trensformations which retain these assumptions
and constraints are described and derived in the following paregraphs. The intent
of this option is to provide a dlgital simulation of the normal lateral-dynamics
problem assumed for control-system analysis, and further, to provide this problem
option in such a form that the validity of the assumption of decoupled motion may
be easlly verified. The inconsistencies of the usual dynamic analysis will be
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observed as the dlscussion proceeds. For operation of the program in-the dhree- -
degree-of-freedom latersl mode, the equations of moticn describing tienslation

in the y direction and the two woment equations for yaw snd roll ere solved Tor e
D, ¢, and v. The velocity components u and w appearing in the y-acceleration
equation are programmed input functions, as noted in Paragreph 2.3. The computed
accelerations ere integrated to obtaim the body angular velocitles p and r, and
the body component of velocity v. Body angular

- velocities will be resolved into inertial com-

: = ponents, The required rotations are conveniently
; - represented on a unlt sphere, Figure (3.5). The
_' labelled pcints represent the intersection of a
- particular coordinate axis with the surface of

- the unit sphere. ©Since only a flat planet is
considered in this optional mode, the Xg-Yg-Zg
coordinates are the inertial coordinates., Only
two rotations are required to orient the body
axls, x-y-2, with respect to the inertial axes
sinc?hyhe Buler angle © is arbitrarily set to
zero' /. The firat rotation is about the Zg-
axis through the angle ¥ and the :'inal rotatlion
is about the x-axis through the roll angle f.

The angular rotatlon rate of the hody axes may

H
i
f
i
1
H
:
i
N

be written as the vector ©. Figurc 3.5 - Unit Sphere
_ _ _ Diagram For Lateral Motion
Ww=ply+rly (3.58) Coordinate Transformetions

whicli may be expressed in the x-n-Zg system (since these are the axes about which
the rotations occur) as:

wa f Ix+06 I, +¥ 1z (3.59)
The unilt vector ié has compements in the xw'q--Zg coordinate system which are:

1, = Cos # Izg - $in § Iﬂ

(4) This assumption is normally made in the three-degree-of-ficedom lateral
dynemic analysis, but 1is inconsistent with the assumptions regarding the velocity
components u and w which define the body angle of atteck (@ = Tan-L (w/u)).
Since the Buler angle © is the augie between the horizontal plane, in which the
lateral motion 1s assumed to occur, and the body axis, x, the Ruler angle should
bc ¢ = & Thiz dlscrepency 1s normelly disregarded in the perturbation analyses
conducted in lateral dynamics ilhvestigations and will also be neglected here.
This is done so that an evaluation may be obtained of the errors incurred by
assuming the motious in the longitudinal and lateral planes to be decoupled.
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system as 1ollow%.

W=ply - r Sin g Tﬁ + r Cos izg - (3.60)

b SR

Couparing the scalar coefficients of similar unit vectors in Equations (3.59)
and (3.60) provides the required relations for resolving the body angular retes

into Buler angle rates.

A bl
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= p
é = ~r Sin § (3.61)
@ = r Cos @

However, the perturbation displacements in the pitch plane are not permitted in
the analysis, as noted in the introductory paragraph to this section. Therefore,
the velocity

© = -rSin ¢

must be disregarded, since it rotates the plane in which the lateral perturbation
motion 1s assumed to oceur, This is the second major inconsisbency of the normal
lateral analysis. The resolution which will he used is:

g = v

r Cos §

W
These relations point vwp a third inconsistency of the normal lateral dynamic
analysis, which is that the roll and yaw rates above are Integrated to define
the perturbed attitudes of the body. Ilowever, these are not the total motion
of the body and the displacements which sctually occur due to the combinations
of u and v velocities in the ¥ and @ directions, respectively are ignored. The
gravitaticnal component resolution required is:

Gy Lw Sin ¢ (3.62)
since the pitch angle 9 is arbltrarily set to zero and angle of attack 1s ignored,

The couwponent of wind in the y-directlon wey be calculated Uy resolving the
Ig vompouent of wind to the bod; axes.

. —
Vy = ng Cos Yg Y
rom the spherical trigonometry of the triangle of referemce, Figure (3.° )
<~
Cos Yy y = Cos @ Cos ¥

Therefore, .
Vy = ng Cos § Cos ¥ (3.63)
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The budy coumponent. of translational velocity will be resolved to a éomponent of
veloclty along the Ig-axis only, as velocitles in the elevation plane are not:
coputed iu this option. This resolution mey be written:

Y, = v Cos Yé\y =v Cos § Cos ¥ (3.6k)

3.1.10 Point Mass Analyses - For this option the rotational body rates
P, 9, and r are undefined. It is, therefore, necessary to rederive the equations
= of motion in such & manner as to avoid this complication. The most convenient
coordinate system is consldered to be a Cartesian planetocentric coordinate
= system desiznated Xa-Yo-Ze. The origin of this system lies on the polar axis
of the planet and in the equatorial plene., The Zg-axie is collinear with the
polar axes and positive toward the south pole. The Xg~axis is in the equa-
torinl plane and is fixed at the longitude of the vehicle ut time equal zero;
(i.e., the coordinate system rotates with the plenet) the Yg-axis is positioned
to ferm a right-handed system. The inertial coordinates X-Y-% and the coor-
dinates Xg~Yg-Ze coincide at time zero.

I
i
i
H
i
I
3
i
L

The components of the planet-referenced acceleration are integrated to
obtain the plenet-referenced velocity components ¥Xg-Yg-Zg. Vehicle positions
in this coordinate system are determined by integration of these veloci..cs.
The position of the missile in & planet-refevenced spherical coordinate system
will be determined. The sphericel coordinates are longitude, geocentric
latitude, and distance from the center of the planet. The angle "C" (see
Figure (3.6)) represenls the change in lengitude of the vehicle and may be
viltten:

C = o -6 (3.65)

Thus the angle C differs from the angle B of the six-degree-of-freedom program
by the planet's rotation, wpt. The angle C 1s related to the vehicle dis-
placement by the expression:

¢ = Tap-l Gs) (3.66)

e

The geocentric latitude, altitude, distance from the planet's center, snd
geodetic latitude are computed as in the six-degree-ot-freedom program, (see
Paragraph 3.1.4). Components of planet-referenced veloelty Xg-Yo-Ze will be
regolved into velocity components in locel-geocentric-horizon coordinates
Xg—Yg-Zg. The direction cosines describing the orientation of the local~
geocentric horizon relative to Xg-Yg-Ze coordinates mey be derived in a manner
similar to that of the six~-degree-of-freedom problem, (see Equation (3.15).
The only difference.is that the angle C must be used in place of B and Xe-Ye-Ze
used in place of X-Y-Z respectively. Since B = QLo - €, - w,t, the angle C
way be calculated by setting wp equal to zero in B. Therefore, the direction
cosines required to orient the local-geocentric coordinates may be caleulated
us in the six-degree-of-freedom problem if is set equal to zero, since
both local-geocentric and Xe-Yeg-Z¢ are planet-fixed coordinates. The required
resolution is obtained fromw Equation (3.15). The subscript zero indicates
that ine direction cosines are evaluated with Wy = 0.
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Flgure 3.6 Relation Between Local-Geocentric,
Inertial, and Earth-Referenced Coordinates for Point-Mass Problems

The flight-path angle~(5) are computed as in the six-degree-of-freedom problem:

Yg
¢ = Sin~t ‘f{?ﬁ;‘é‘ (3.69)
y = sin~l (_‘EE) (3.70)
Vg

Equations (3.68), (3.69), and (3.70) are applicable to both the oblute- and
flat-planet options.

(5) The flight-path angles ars defined by surface-referenced velocities
with respect to the local horizon and longitude lines.
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forces must be revolved into the components of this systeuw.

The forces will first be resolved from the wind sxes to the local-
The wind axes are defined relative to the local geo~

gencentric coordinatcs.
heading, ¢; flight path attitude, 7; and

centric axes by three angles:

bank, BA .

Since the squations

Figure 3.7 -~ Relationship Detweer Local -Geocentric
Axes and Wind Axes

The transformatinng are:

: /o Xeg
s S
“'/ ,\X'

4 Yg
g ta
F:'__Z._ X
\ \
\. I-‘\Zﬂ
Zg-
AN
- By
Y, ~ \
14 \/
Zl—\

Xt

Y?

YA

Zp

cos ¢ sin ¢
-sin ¢ cos @
0 0
cos ¥y 0
0 1
sin 7 0
L 0
9] cos Ba
0 ~ sin By
31
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The aerodynamie and thrust foreces f'or the poiﬁt-mass.pi&ﬁiéﬁuﬁilifhbiﬁgiiif T
be summed in a wind-axis coordinate system, Xap~Yp~Zp.
of motion are golved in the Xe-Yg-Ze coordinates, the wind-axis compunents of
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X co8 y cos © cos 7 gin & " -gin ¥y g ' ?é

Yal=1]-8in o cos By cos 0 cos By cos 7 sin By P (3.71) f:

+ 8in 7y cos ¢ sin By + sin 7 sin 0 sin By ; i

: b

Zp sin ¢ sin By -cos 0 sin By cos 7 cos By | | Zg 7 D
+ 8in y cos o cos By + sin 7 sin O cos By : :

which will be defined as

i ry 81 t Xg
= | rp 8o to Yg (3.72)
T3 53 t3 Zg

The resolution of forces [rom wind axes to local geocentric becomes:

gl | ™1 r2 r3 Xy
FYg ' =85 82 B3 | Fyy (3.73)
Fzg tl t{_’) t3 ‘ FZJ_“

For the rotating-planet, the local geocentric components must be resolved to
components Iin the ¥Xy-Yo-Ze system. The required direction cosines are given
by Equation (3.67) evaluated using the angle C in place of angle B.

FXe 110 120 130 FXg
Fyo| = | Jio J2o J30 g (3.74)
Fz.o J10 Jdoo J30 F24

The combined transformetion “rom wind axes to local. geocentric will be defined
as a single matrix.

er 01 oo 03 ! FXA mgxe
Fy 1= Im P2 P3 Fyg b+ | mey, (3.75)
FZe 94 dp Q3 FZp Dgy, e
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3.1.11 Bog y-Ax°s 40 Wind-Axes Transformation - To permit the uge o:t‘ hoﬁy \;g,
¥, %) axes aerodynamic date and to convart the body axes components of thyust
to the wind axes system, a coordinate trensformation must be made. The coor-
dinate transformation below is first through the angle of attack, o, and then
through an auxiliary angle, £!.

x
v
y/
w //
Y u . X
c.".\
_ w
ten B* - ~ cos « u/‘-’oc}\
u x?
= tan B cos Q g
%

Figure 3.8 Relationship Between Body Axes
and Wind Axes
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N e~gﬁﬁ-g§
=

x! cos o 0 sin a X B
y' = 0 1 0 y %
=
z! -sin o 0 cos @ z b
iE
Xa cos B sin p?Y o] x!? iég
I3
: Yp ! = -sin B' cos B! 0 y! L
- Zp 0 0 1 FA S
B = cos P' cos ¢ sin P! cos £' sin o | % R
-sin B! cos cos B! -sin p' sin o y (3.76)
-gin ¢ 0 cos z

which is defined as the u-v-w direction cosines.

Xp vy U2 43 I X

Ypl=1lv Vo 3 ] y (3.77)
Z, vy Vo w3 z
-Cp Uy Uy u3 : '("'A

Oy 1= vy v, Vs i Cy (3.77a)
~Cy, ¥y L w3 l -CN ,

The relationship between body and wind-axes aserodynamic coeff'icients is then
establlished, noting the negative directions of thc coefficients relative to

the axes system.

If the assumption is made that the bLody xy plane lies in the vertical,
= 0, an alternate transformation can be made (Figure 3.9) using the pitch 3
angle 9, the difference between the azimuth heading and the yaw angle, ¢ - V, :

and the flight path angle, 7.

The directinn cosines required for this transformation from body to the
vertical winé axeg system are:

Apy cos 7y 0 -gin 7 ||cos (o-¢y) sin (o-¥) O ])cos @ 0 sino|}x i
Yay | = 0 1 0 -sin (a=¥) cos (o-¥) o 0 1 0 y '
Zpy gin 7y 0 cos ¥ ¢} V] 1 -3in® O cos @)z
(3.78)
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Figure 3.9 - Relationship Between Body Axes and Vertical
Wind Axes Wilh Zero Body Roll Angle

The angles 7 and o are computed in the point mass onptions; © and ¥ are not.

Applying the luw of sines to ihe spherical triangle Xp-4,-E:
V =

' Fd -
oin (g - ¥) - Sin Bl {3.79)
cos ¥

The sine of B' may be expressed in terms of the hody coordinate components of
velocity as:

v v
sin B! = = = —— (3.80)
v J ul + ve 4 w2
Dividing numerator and denominator by u and expressing in terms of ¢ and 3
, tan P
sin p' = Jl + tan g + tan 2 p (3.81)
Substituting Equation (3.81) into Equation (3.79)
tan B
- = -1 — .82
o~V sin cos 7Jl + tan2 o+ tan® B (3 )
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Since the body roll angle is zero:

6 =qa +7° (3.83)
Apprlying the law of sines to trilangle XA;y-C:
R (A W (S 2 ,_.m\ (3.84)
) \uua p ’l - sing ﬂl/ )

The angles © and g-¥ can now be evaluated in terms of @ and © for use in the
vertical wind transfcrmastion, Equation (3.78).

This transformation from body axeés to a vertical wind axes, with the
asaumption of zero roll, is the transformation used in the computer program.
Thus, the load factors computed ere also in the vertical wind exes system.
The transformation from the vertical wind coordinates to the local geocentric
is given.by Equatiou {3.71), noting that the bank angle is zero for the
vertical wind axes system.

3.1.12 Winds in = Point Mass Analysis - The effect of wind can be intro-
duced in a point mess problem when the vehicle's angular posltion is dictated
by an assumed perfect control system. The wind computations in this section
are specifically designed for a control system using three rate-integrating
gyros. The wind components will produce sn angle of attack and an angle of
sideslip vhich are not removed by the assumed aerodynamic stebility of the
vehicle, elnce the vehicle's angular pusition is fixed by other mesans, e.g.,
reaction control. 'whe ahove conaitious wust L rcalized before the optional
computations presented in this sezction can provide meaningful results. Only
Flight Plan Programmer 10 usets thcsc requisiltes.

The change in ¢ and B due to the three components of wind is to be deter-
mined assuning that no instrument errors are present. Figwwe {3.10) contains
the geometry necessary to consider winds. XA-YA-ZA is the location of the
wind coordinate system before the perturbing wind cowponents are introduced.
Xp-YA-Zp is the new location of the wind coordinates after the perturbation
occurs. XA is coincldent with the airspeed vector, Zp is coincident with the
1ift but is positive in Lhe opposite direction, YA defines the side force.

The three local geocentri: components of winde will be introduced in a
tabular listing with altitude as the Independent variable. Let the three
components of wind be written as follows:

Vw = ng lxg + ng lyg + Zgw lzg (3.85)

gg North
¥F Fast
Zé Directed towerd center of earth

The airspeed vector is given by:

Vo = Vg - ¥y (3.86)
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WIND COMPONENTS FOR A POINT MASS ANALYSIS

XAYAZ, 15 A WIND COORDINATE SYSTEM Tp = -Cp Ty T, = <, Ty, CL=-C.T7,

xyz BODY COORDINATES Xg Yg Zg LOCAL GEOCENTRIC COORDINATES

FIGURE 3.1¢

37




AR

B T T T} Y Uy —

W

.y
-.fﬁ:‘yg

|

Il

¥
B

where V; is the velocity relative to an atmosphere which has the same angular
velocity as the earth, The three local geocentric_companents of ﬁitﬁﬁéﬁd afe"

Va = (x - wa) lx + (Y - ng) ly + (Z - Z‘gv) 1zg | (3 87)

The elevation and azimuthal flight path angles of the sirspeed vector are:

v = ot (8 T (3:68)
-
Y, - Y
@ = tan”l ( E & (3.89)
\x +Xg,

The summation of the external forces in Option Six is performed in the
wind coordinste system (XpYaZp), and the resulting components are resolved to
the locsl geocentric system through the r-s-t direction cosines. The r-s-t direc-
tion cosines are derived with the 1ift vector restricted to the vertical plane.
This derivation is unsuitable when the direction of the 1ift is dependent on
the vehicle's roll angle. ©The additional angle required to defiane the direction
of the 1ift (negative Z, axis) is the bank angle, By. The bank angle is
measured in a plane perpendicular to the airspeed vector (V) and is referenced
to the ‘rertical plane containing Xj. The resulting r-s-t direction cosines
will be altered by =24ding the rotation about the Xp axis through the bank
angle to the sequence of rotations, thus leading to Equation (3.71) transposed.

| Fxg \ cos Yp cos op -cin op 8in v, cos 0y 'l 0 0 Py,

i Fy, | = | cos Vp sin op cos ¢  sin 7, sin op io cos By -sin Bp| |Fy
l'vzg ‘ l -ein 7y 0 €os Yy | !O sin By cos BA| iFZa

vwhere Fx Fy,, and Fz, are the components of aerodynamic and thrust forces in

the wind coorainate system. Performing the indicated matrix multiplication
gives:

I"xg cosY, cosop -singp cos By singy 8in By l Fx_al
+sin cosop sin By +sin7) cosoy cos By |
i
Fzg = | cosY sing, cosogy cos By -cosop sin By Py, (3.9)
+8in%, sinop sin By +sin ) sinop cos By | !
Frq -sin 7y cos sin By cosy, cos By ' Fz,
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The r-g-t direch:ion _cosines are to bhe defined by corresponding Poﬂiﬁiéng;in; Mmff;
equetion (3.90) and (3.91). ST

I Fxs ry ra r3 FLa
(Fy |= |s1 8p 83 F‘Ia (3.91)

The development of vhe direction cosines relating the wind and body
systems presented in Section 3.1.11 is also performed with the restriction
that the 1ift is in the vertical plane. This restriction will be removed by
permitting an additional rotation of the existing wind coordinate about the
veloclity (VA) through the bank angle, Ba. This change 1s required to permit
the correct summation of aerodynamic and thrust forces. The additionel rota-
tion matrix is made to Eguation (3.78).

x |

Xal {2 0 0 cosyp O -sinypl| cos(o-¥) sin(o-y) Ofl cose 0 sind
Yal=l0 cos By ainBa il O 1 0 ||-sin(g-¥) cosls-y) OJfj O 1 O y,
|ZA {0 -sin By cos Bp |lsinyp O  cosyp 0 0 1jt-8in®@ O cos0 || 2

(3.92)
3.2 Guidance and Autopilot Coordinatc Transformations - The vehicle

attitude information taken from the gimbals of a stsbilized platform and the

outputs of platform-mounted accelerometers may be required in certain autopilot

end guidance-system computations in the Six-Degree-cf-Freedom Flighl-Falis

Study computer program. This section presents the derivetion of the equations

relating accelerometer and atiituds information to data computed in the

central program. The method for deriving coordinate trensformations for any

glmbal arrangement 1s presented for reference.

3.2.1 Gimbal Arrangements and Rotation Sequences - Three [requently used
gimbul arrangements will be considered in this section. Each gimbal is
equivalent to an intermedlate coordinate system in a serles of Euler-angle
rotations. Reading from the inner gimbal Lo the outer gimbal (and neglecting
redundant gimbals) the arrangements consldered are:

(1) Yaw-Pitch-Roll
(2) Pitch-Yaw-Roll
(3) Pitch-Roll-Yaw

where the enalogy between coordinate system rotations and gimbal movement is
used. Other gimbal arrangements are possible; however, the three discussed
in this section are the ones most frequently utilized. The transformetions
for the ulternate arrangements can be obtained using these same techniques.

3.2.2 Euler Angles - In the central program, the direction cosines re-
lating the vehicle body-coordinate system to a fixed inertial system are
calculated by integrating functions of the body angular velocities, p, q, and

e
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_"The dirdection ec«ainas re;at:tng the body and :I.nertial ays’ mg
by the cosines of the angles between the varicus axes of the- ceardinahe.sys%ems
and are dependent only upon the position of the body coordinates referenced
to inertisl coordinates., That is, the order of rotation selected to errive st
a certain orientation does not alter the numerical values of the direction

cosines for thet orientation.

Each individual direction cosine may, therefore, be defined in terus of :
the Euler angles from a pgiven sequence of rotations. These definitions will
provide the Euler engles of the body with respect to the platform coordinate

syatem for the three rotational sequences selected.

L The direction cosines, in terms of the three sets of Euler angles, will be
derived using the method of Reference (9). The technique used is to find the

) direction cosines for each individual rotation in a sequence and determine

- the complete transformation by multiplying the individusl dlrection cosine
matrices. The overall picture of the rotations is best observed on a unit-
sphere diagram. The roints on the unit sphere represent the intersections

—ea g

of the coordinate axes with the surface of the sphere.

The order of rotation and the axis avout which rotation occurs can be
descriped using the following diapgram.

AXIS AND RQTATION ORDER

X Y b This diuwgrauw indicates that the
v 1. first rotatiun is ahout the iner-
3 T % tial Z-axis through the Euler
%‘ 2. angle V. The second rotation is
X 1 4 about the intermediate axisy
t¢ 3. through the angle 6. The final
X Yy e rotation is about the body

x-axis Lhrough the angle ¢.

The derivation of each sequence of rotations will proceed in the follow-
ing manner:

(2) 'The order of rotation will be defined.
(b) The unit sphere showing all three rotations will be presented.

(¢} The individual rotations will be shown in three separate diagrams
that contain the plane perpendicular to the appropriate axis of rot&ion.

{(d) "The direction cosines for each individual rotation will be written
in this manner:

g Cegx Cey Cgp X

Cx  Cny Onz |} ¥

Lo

JON—



where Cyj is the cosine of the angle between the 1 and ) axes.

(e) The watrix of directiion cosines réléﬁing +he inertial and body €OQT-
dinates will be determined by matrix multiplication.

The computation sequences required for these computétions are outlined by the
functional flow diagram, Figure (3.11).

AW -PITCH-ROLL ROTATION

AXIS AND ROTATION  ORDER

X Y Z
PV 1.
g n Z
o 2.
X 0 4
{¢ 3.
x y Z
tigure 3.12 Unit Sphere For -
Yaw-Pitch-Roll Sequence of Rotaticn
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THIRD ROTATION

(o o

0 0 b
Cos § Sin ¢ || 4
-sin @ Cos ¢ || ¢

The trsnsformation matrix iz given by

]
[

X

y =i¢”°

X
b4

g

or, in terms of the planar rotation matrices, the intermediate axes are elim-

inated by

x i 1
:y'!‘ 0
pA 0

0o o

Cos § Sind

-Sin §  Cos ¢

Cos @ © -51no“c°sv Siny O
0 1 0 Siny Cos ¥y O

Sin © o} Cog @ 0 v] 1
i

The direction cosine elements of the transformation watrix are obtained by per-
forming the indicated multiplication. FYor the yow-pitch-roll rotational

sequence

(Cos 6 Cos V)

(~Cos ¢ Sin ¥

+ 8in ¢ Sin 6 Cos ¥)

(Sin ¢ Sin ¥

+ Cos @ Sin @ Cos ¥)

(Cos © Sin V) (-5in @) X

{Cos ¢ Cos ¥ (Sin g Cos ®) || Y

+ Sin ¢ Sin @ Sin V)

(=Sin ¢ Cos v (Cos ¢ Cos Q) A

+ Cos ¢ Sin © Sin V)

(3.93)
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AXIS AND ROTATION
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Figure 3.19 Unit Sphere For
Pitch~Yaw-Roll Sequence of Rotation
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The transformation watrix is given by

d
|-t )

p.¢

Z

or, in terms of the planar rotastion matrices, thz intermediate axes are elim-

inated by

B

‘y i

3]

1

Q

0
f

0 0 Cos ¥ Sin ¥ 0 fins @' 0O 5in @7
Cus @1 Siu @t ~iu WY Cos VT 0 4 1 o
~3in 4! Cos ¢* 0 0 1 Sin @' 0 Cos &'

The direction cosine elements ol the transtormation motirix are obtalned by
performing the indicated multiplication. For the pitch-yaw-roll rotational

Sequence

(Cos V' Cos ©') (8in ¥*) (-Cos ¥* 5in @)

(Sin ¢! Sin o! (Sin ¢* Cos ©°
(Cos @' Cos V)

-Ccs ¢' Sin ¥* Cos 61) + Cos @' Sin ©' Sin V)

(Cos @' Sin @ (Cos @' Cos o

(-Sin ¢ Cos V')

+ Cos ©' Sin V' Sin ¢') - Sin ¢ Sin ©* Sin V')

(3.9%4)
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Figure 3.1h
Pitch-Roll-Yaw Sequence of Rotation
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THIRD ROTATION

x Cos V" Sin ¥" 0 I 3 ' ¢

yi= | -8in ¥" Cos V" O | |¢ g_‘-}]z
~

2 0 0 1 4 y/

The transformation matrix is given by

b 4 X
y| = ‘\F" t ¢n o" l y
2 A

or, in terms of the planar rotation matrices, the intermedliate axes are elim-

inated by
!xl Cos ¥ Stay" 0 )1 0 0 t Cos 6" 0 «5in e" f Xl
y{= | -Stn y" Cosy® O |} O Cos ¢ 8in ¢" ‘ 0 1 V) i '.t"i
2 0 0 1 [{o -Sin¢g" Cos ¢ Sin 6" O Cos o" j 7|
P
The direetion cosine elements of the transformation matrix are obtained by
performing the indicated multiplication. Tor the pitch-rull-yaw rotational
sequence
(Cos ¥" Cos 8" (-Cos ¢" Sin 0" |
x (Sin ¥" Cos ¢") X
+ Sin ¥" Sin ¢" Sin o") + 8in V" Sin ¢" Cos @")
(-Sin ¥" Cos " (Sin 6" Sin ¥"
vl|= (Cos ¥" Cos ¢") Y
+ Cos ¥" Sin ¢" Sin o") + Cos " Sin ¢" Cos ©")
z {Cos ¢" Sin o") (-8in ¢") (Cos ¢" Cos ") Z
(3.95)
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The direction cosines relating body and inertial coordinates are a.ssigned the

- following sywbols in the central program (see Equation (3.1)). - .. _ j_m—~~—{mm4

{X I ll 1, l3 X
y|=|m wp m3 Y (3.96)
z ny no n3 Z

By comparing identical positions in the matrix of Equation (3.96) with the
matrices in Equations (3.93), (3.94), or (3.95), the direction cosines above
are defined in terms of the appropriate sequence of Euler angles.

3.2.3 DPlatform Coordinates - An orthogonal platform coordinate system,
XP-Y -Z,, is defined by the sensitive exes of three mutually perpendicular
accelerometers. The direction cosines describing the inertial orientation of
platform coordinates will not be derived. The angles used to orient the plat-
form are the inertial angle, Bp, geocentric latitude ¢Lp: and azimuth A. The
sequence of rotation is given in the following di-gram:

AXIS AND ROTATION ORDER The first two rotations coincide with

the sequence used in Equation (3.15)

b4 Y to define the local-geoucentric-horlazun
(180°¥Bp)i 1. coordinates, The dirvection ensines
£ Y 2 vwhich relate the local-geocentric co-
(90°-¢1, 3f 2. ordinate system to the inertial coor-

: - ZE dinates will be used for the first
h © A} 3. two rotations.

X., Y, b
r r Fid

PO R 1T 15 B

Gl BT

i

acililia

LN

115 i e

L3

v ! ~ Q 3

o ~Cos By Sin ¢LP ~5in Bp Sin g, -Cos ¢LP X
Yg| = Sin Bp -Cos Bp 0 Y
Zg ~Cos Bp Cos L, -Sin Bp Cos ¢Lp Sin ¢, o Z

(3.97)
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The direction cosines dsfining the platform coordinates with reference to
Local.~geocentric Horizon ecordinmtes ey be dbtaingdfby rotating -abouti -the -
Zg-axis through the azimuth angle A, as shﬁun in Pigure (3.15).

f"ﬁﬁam Xp

T—— -
7

Figure 3.15 Relation of Platform and
Local-teocentric Horizon Coordinates

The transflormetion watrix for this rotation is:

N—\i cos A Sin A i Xg
, -5in A Cos A 0 | ¥ {3.98)
%p ‘ 0 1 | Zg

The direction cosines defining the Xp, Yy, and Z, platform coordinetes may then
be determined by substituting Equation (3.98) into Equation (3.97).

The direction cosines defining the transformation from the inertial coordinate
system to the platform coordinate system, in terms of the orientation angles, are:

Xp

(-Cos Bp Sin ¢LP Cos A  (-5in B Sin @, Cos A (-Cos ¢Lp Cos A)] | X
+ $in Bp Sin A) -3in A Cos Bp)
Yp | = | (Cos Bp Sin ¢'pr Sin A (8in Bp Sin ¢Lp Sin A (Cos ¢Lp Sin A) Y
+ Sin By Cos A - Cos Bp Cos A)

Zp (<Cos By Cos ¢Lp) (-8in By Cos ¢L ) (sin ¢-p) Z

L9




the notetion,

xP a,l a2

Fer convenience, the direction cosines in the matrix will be éefin@@-by;f~~;;

23 X
b3 || ¥ (3.1¢0)
03 Z

3.2.4 Platform Angles for a Flet-Planet Problem - For a flat-planet

problem, the orientation of the pletform coordinuie system will be assumed to
coincide with the flat-planet coordinates. Therefore, the angles measured on the
glmbals of this platform way be determined for the three gimbal arrangements
considered. For the yaw-pitch-roll gimbal system, the following direction

cosine relationships are obtained by comparing corresponding positions in the
matrices used in Equations (3.93) and (3.96). Five elenments are sufficlent to

define these engles.

- 13 = =5in ©
lp =Cos ® Sin V¥
l} =€cs 6 Cos ¥
my = 8in ¢ Cos @
ny = Cos § Cos @

(3.101)

The Flrst equalion deflanes the angls ©. The angles ¥ and ¢ may be defined
explicitly by combining the second snd third equation and the fourth and fifth

equation, Lhus
’ 3

Sin @ = <~ 13
and Tan ¢ = m3/n3

For the flat-planet problem with the platform st: ilized to coincide with
the Xg-Yg-4g coordinates, these angles represent the angles measured on the
gimbals and will be designated with a subscript p.

Op = -Sin~t 13
Vp = Tan<l 1p/1
b = Tan-1 m3/n3

(3.102)

ey
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Similarly, the angles measured om a pitch-yaw-roll giubal arrengement may
Ye computed by comparing identical positions in the matrices used in Bquations
(3.94) and (3.96).

lp = Sin 1’13
= ' ot
1 Cos wp Cos b
= ' Sin ©°!
13 =Cos VP n o

g
N
!

Cos ¢I'> Coe \kI"

n, = =Sin ¢1') Cos vI" {3.103)

Then
Sin ¥} = 1p
Tan Qﬁ = “1 j /l l

Tan (él'; -np/mp

Agair for the {lat-planet problem, the gimbal sangles for this arrangement are:

v o= Sin=t 1o
o) = wan™l -13/1

Tan-1 -np/mo (3.104)

?

The appropriote direction cosines for the computation of the angles for
a pitch-roll-yaw systenm ere:

ng = =Sin ¢§
wp = Coe ¥p Cos ¢i;

lp = Sin yg Cos ¢]'5

(3.105)
np = Cos ¢ Sin 6p
ny = Cos ¢fo Cos 6p
The platform angles are found from these direction cosines to be:
#p = -Sin-l ny
op = Tan-L ay/ng (3,106)
vp = Ten d 1p/mp
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For the flat-planet problem, the engles derived in Bquations (3:d
through (3.106) represent the-attitudes of the vehI‘IE“ﬁiih- T
X g-Lg-Lg flat-planet coordinates and also with respoet %o a‘platfarmrcearﬁigata
aystem whose respective X - ? axes are parallel to XY g2, Since the-
orientation of the platform in ghis problen also correspon 5 to the orientation
of the imewtisl coordinates X-Y¥-Z of the rotating-planet problem in the eguatorial
Plane, these angles are also ths inertial attitudes (¥, ©,d) of the venicls
with respect to X-¥-% coordinates of the roteting-planet problem. The com~

putation of these platform relations are summarized, along with the accelero-

meter indication in Figure (3.16).

3.2.5 Platform Angles for Rotating-Planet Problem - The attitude angles
avallable from the orientation of the platform glwbals will also be required
in the guldance and rcontiol subprogrems for the roteting~plenet problem. In
Paragrarh 3.2.4%, the direction cosines relating the platform coordinates and the
body courdinates were kuown, and it was relatively simple to obtain functions
of the pletfarm angles. For the rotating-planet problem, it will be necessary
to express the direction cosines relating the body and platform coordinates
in terws of the l-m-n snd a-v~-c¢ direction cusines. When this is accomplished,
the prccedure developed in Section 3.2.h4 will be used to obtain the platform
Let this required set of direction cosines be defined in genersl form

angles.
as:

el fl l X
do en ) Y (3.107)

| ' d3 eq 3 P2
The direction cosines in this 3-by-3 matrix may be defined in terms of
any one of the three sequences of rotations derived in Equations (3. 93),

(3.94), and (3.95). For the yaw-pitch-roll sequence, this matrix is obtained
by using platform Euler angles in Equation (3.93).

Xp (Cos 0y Cos wp) (51n ¢p Sin Op Coe *? (tos ¢y Sin o, Cos V¥ X
- Cos ¢p Sin ¥p) + Sin ¥, Sin ¢p)
Yp|= | (Cos 6 Sin ¥y)  (Sin @) 5in 6 Sin ¥,  (Cos ¥, Sin @ Sin ¥, | |y
+ Cos @5 Cos Vp) - 8in @y Cos ¥p)
Zp (-5in Op) (Sin ¢p Cos Gp) (Cos ¢p Cos Qp) 2
(3.108)

The d-e-f sev of direction cosines will be expressed in terms of the a-b-c
and l-m-n direction cosines. The a-b-c direction cosines relating platform
and inertial coordinates were derived in Equations (3.96) through (3.100);
these a-b-c direction cosines may be evaluated from input data and/or from
central program informetion according to the platform orientation scheme
selected (see Paragraph 3.2.6). Equation (3.100) is repeated here for con-

venlience,
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FIGURE 3.16, FUNCTIONAL FLOW DIAGRAM ~
PLATFORM ANGLES FOR SIX-DEGREE-OF-FREEDOM FLAT-PLANET OPTION
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Yp = 'bl b2 b3 Y
Zp o], ca ) Z
The transformetion from inertial. coordinates to hody coordinates was derived

in Paregreph 3,1.3 and the direction cosines in this transformation are cal-
culated in the centrel program as follows:

X 1, m nj, X

Y|={1p m maf| |y {(3.109)
Z 13 my nj 2

Eguations (3.100) and (3.109) may be combined according to the laws of
matrix multiplication to give

xP al 82 9.3 ll ml nl X
Ypi=1ib1 b2 b3 pilz mp np yl (3.110)
|Zp e ¢ c3 l3 m3 n3 z |

Since the product of +he natrices in Equation {3.110) are the direction
cosincs rclating platform and body coordinates, this product is the required
set of d-e-f direction cosines, and

d ey fi] |(agly + aplp + asls) (agm + apmp + agnz) (ayny + agny + agng)
dp ez fal=1(b1ly + balp + b3ly) (bimy + bamy + bmz) (bpuy + bpup + b3ng)
d3 ey I3 (31 + cploy + 0313) (epmy + egmp + c3m3) {cimy + cghy + 9333)

Functions of the three angles of the yaw~pitch-roll sequence way be deftermined
by equating corrcsponding positions in the matrix on the right of Equation
(3.111) with the matrix of Equation (3.100). First equate the terms in the
31 position (third row, first column).
- 8in 6p = c1ly + cplp + cgly
The pitch attitude of the missile with respect to the platform is then given by:
9 = - sin~L (c11y + cplp + C3l3) (3.112)
Equating the il snd 21 positions in each matrix gives the following relationships:
Cos Oy Sin ¥p = b1ly + bzlp + b3ly (3.113)

Coe @y Cos ¥p = ajly + aglp + a3lgy (3.114)

ok



Dividing Equation (3.113) by (3.114) gives an cxpression for the ansle Ypi o

v, = Tanl [Pal1*tele +boly (3.215)
\a'lll + aplp + aglj

Finally, the roll angle ¢p will be found from the 32 and 33 positions
Cos ©p Sin @p = cym + comp + cqm3 (3.116)
Coa @, Cos fp = cym) + cong + c3ng (3.117)

Dividing Equation (3.116) by (3.117) provides an expression for the roll angle:

gy = Tap-l [ CLU1 * Camp *+ c3u3 (3.118)
€181 + con2 + c3nj3

This completes the suvlution for the three angles for the yaw-pitch-roll
sequence for a rotating-planet problem. The platform angles for the other two
sequences are found in e similar fashion and are glven ss follows:

Piteh-Yaw-Roll Seguence

¥g = 8in"l (b1 + bolp + b3ly) (3.119)
of = Ten-l -(c1ly + cplp + 0313_)_ (3.120)
81l + aply + 83l3 .
4
t = Tan-l ~(byny # bonp + bang) )
¢P an ( byuy + bpip + biymy (3.121)
Pitch-Roll-Yaw Sequence
¢1'; = Sin-l (—(blnl 4+ bong + b3n3)> (3.122)
o' = Tan"l ajn] + agnp + a3n3
P (clnl + conp + e3ng (3.123)
{071+ boly + bala
V7 = Tenl ( 11 2 _33 (3.124)
oymy + bomp + ‘b3m3,

3.2.6 Platform Orientation - For many problems, it is convenient to torque
the platform in some prescribed manner., The actual dynemics of platform stabil-
ization will not be considered in this problem, however, the platform can be
oriented in any prescribed fashion by adjusting the direction cosines relating




the platform and inertial coordinates. These diyection. cuﬂiggaﬂﬂnewﬁunntipna of. .
the loertial angle Bp = Qg - Op, --Ugt, the pletform geocentric latitude; gr.,

and the aximuth of the plailorwm. Three casaes of platfurm orientation will w
‘be considered. :

Case I Platform Inertially Fixed - The platform may be fixed inertially at
any desired orientation by ueing uhe appropriate angles, Bp, ¥, @nd A in the
eveluation of the a-~b-c direction cosines relating platforin and inertial coor~
dinates. The usual procedure could alsc be aligned by a stellar fix. In this
instance, By = O, ¢1,p = geodetic latitude of the launch site, and A is the
desired azimuth. These values are constants during the flight since the
platform is fixed inertially.

Case II Platfcorm Torqued et Constant Rate About tbe Polar Axis - The constant
ongular rate selected for this application is usually the angular rotational
rate of the planet in question. The platform coordinates now become & tangent
plane t'ixed to +he n1an t at a point which is usually the launch site. Then
the angle Bp = ¢L is the geodetic latitude of the launch gite und A
iz the desired asz muth.

Case III Platform Aligned With the Local-Geocentric-Horizon Coordinates -
The platform is rotated so that %; is aligned geocentrically downward and the
Ap-axis Ls2 pointing northward in é meridian piane. This orientation of the
pLatform coincides with the orlentation of local-geocentric-horizon ccordinates.
The direction cosines relating the local-geocentric-horizon coordinates and
inertial coordinates ere continaocusly eveluated in the central progrem and may

be used a8 the directilon cosines relating the platform and inertial coordinates
for thic cngo only; thue

mp  ap e h kK
b bp b3 | = |12 do ko (3.125)
Loy cp ey | 13 I3 k3

These three cases are smong the ones most frequently used. Additional
methods of platform orilentation may he slmulated by following the procedures
used in developing these three cases.

3.2.7 Flatform Coordinate Transformations - Reduced Degrees of Freedom -
When an autopilot is used to control the flight of a vehicle which is con-
strained to motion in reduced degrees of freedom, the platform motion has a
slullai constraint applied to it. The coordinate transformetions required to
relate the platform to the body axes are simplified for the seme reasons the
transformations of Paragraph 3.1.7 are reduced. Of the reduced-degree-of-frecdom
options avallable, the three-degree-of-freedom longitudinal option is best
sulted to the use of a platform in conjivnction with the autopilot. The
platfcra translormations which follow sre applicable to this option., The
platform cocrdinate system will be defined as the X p-Zp axis for the three-
degree longitudinal proovlem; three possibilities are considered for the
rotating-planet problem in the equatorial plane.
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1. Platform inertielly fixzed at launch site.
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Figure 3.17 Platform Ccordinate
System Inertielly Mixed at Launch Site

o
ratakess Cavs

Tne platform axes are situa?ed in the position ol the Y,-2, coordinate system
ot t = 0. {See Figure (3.4), Paragraph (3.1.8)). The angle of the body axes
with the pLatform axes is 900 + 8, therefore:

o = B4 20° (3.126)

2.  Plattorm torgued at the planet rototionul rate.

Equator

¥

Y

Figure 3.18 Platform Coordinate
Bystem Torqued at a Constant Rate
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From Figu-e (3.17) for eastward flight @p = 90° + wpt +@. Siwmilarly, for
vestward flight Qp = 909 - pt 4 , o

The appropriete sign is inserted by using the factor Kg:
O = H° +Kg upt +@ (3.127)
3. PFlatform torqued to local-geocentric - In this case local-geocentrie
coordinates Y,~2, are identical to platform ccordinates YP-ZP 80 the platform

angle is the engle with the local-geccentric horizon, @, given by Equation
(3.55), Paragreph (3.1.8),

© = 0, = %9°-K, 8+8 (3.128)

For a three-degree longitudinnl flat-planet problem with the platform coor-
dinates coinciding with the flat~planet courdinates, the platform angle is the
same as the pitch ottitude, @, with the rlat-planet (inertial) coordinetes,

s0 that:

op = © (3.229)

The computations required to determine the platform angle for the three-degree-
of -freedom, longitudinal, equatorial-plane option are summarized in Figure (3.19).

(a) EQUATORTAL PLANE

HOW IS PLATFORM ALIGNED

INFRTIALLY ~ TORQUED ABOUT)TORQUED TO
FIXED | POLAR AXIS LOCAL
[ IGEOCENTRIC

t o+ }

a0
Gp = 90" + Ko Wy

I e
CONTINUY, PROBLEM

(b) FLAT PLANET

CONTINUE PROBLEM

Figure 3.19 Functional Flow Diagram~Platform
Angle for Three-Degree-of-Freedom Longitudinal Computation
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3+2.8 Accelerometér Indications - Let & be the vector sum of the platform
accelerometer outputs and g be. the mass atbtrastive aceeleration of -the planst. .
The  aecelercmeters are calibrated to read zerc when they are unaccelerated _
and aligned such that the sensitive axis is perpendicular to g. Thé vector R
will represent the displacement of the Slatforn with, respect to the center of
the planet. It will be shown that A = R - g whare R is the inertisl accelera-
tien of the platform. Consider the vehicle accelerating vertically at lg with
respect to a spherical body. In local-geocentric-horizon components then
R = -g iﬁs (3.130)
- In the absence of a gravitational field, the
=1 accelerometer should read -lg. Positive
motion of the accelerometer mass slong the
Zg axis represents a negative ecceleration
. in this case, and the vector g is equal to
B & 172, Corsideration of the gravitational
fiel% will cause an additionel displacement
of the accelerometer wass in the positive
Zg dlrection giving a total indlcation of
-Pg. The equation

LA ]

A=R-§g (3.131)
g
will be cvaluated from the data
ﬁ = - lg IZE
s0 that Figure 3.20 Accelerometer With
_ _ Sensitive Axzis Aligned With
A= -2 1%.g {(3.132) Loeal-~teocentrie Vertieal

This result is shown schematically in Flgure (3.20).

The vector A is equal to the vector sum of ihe accelerations produccd by
the externally applied i'orces., ‘'he body components of the externally applied
forces may be taken trom the sepsraite subprogram which gives the summation of
forces and woments. Fy, Fy, and F, are the body components of the external
forces plus the weight. The weight must then be subtracted to determine the
body compounents of A:

- & . Fy - - Fy =m - Fy = =
A-R-g= (—3‘7%";55)1,( + <‘l7i—§x) Iy + (-—‘-n—niiz-) I (3.133)

The body components of the vector A will now be resolved to platform coor-
dinate components; these platform components will then represent the accelero-

meter outputs. This resclution utilizes the directicn cosine metrix of Eguotion

(3.110) which relates these two coordinate systems, thus
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Ax-pl ay an a3 | 1y . ny- . - B

AYP = 1by L b3 1o me n2 7 gmi-gy R (3.1‘31}_)
Mpl Jer 23 ! 13 m n3 | |ZE- g

where Axp, Ayp, and Azp represent the output of accelerometers whose sensitive
axes are allgned along the three platform coordinate axes.

3.3 Auxiliary Transformations - The computer program developed in the

T Six-Degree -of ~Freedom Flight-Path Study is a gerneralized program capasble of

- calculating the motion of various types of flight vehicles. To define completely
- the various trajectories which may be analyzed requires the computation of a

wide variety of flight parameters. It is evident, however, thet for many
analyses the computation of the entire library of these parameters 1s unnecessary.
It is the purpose of the present discussion to specify and derive the speciml
relations and transformations for those auxiliary parameters which, in the
interest of program slmplification, way be deleted from the computation if the
parameter is not required. The coordinate transformations and suxiliary para-
meters discussed in the present analysis may be generally considered as

Category (3) transformations, as deflued at the beginning of Section 3. Under
certain eonditions, however, the transformations may be equally pertinent to
other categories. (For example,@ and B may be reguired to compute aerodynamic
forces related to Category (1) as well as being used for the convenience of

the analysts in readout, Category (3)).

3.3.1 Angular Rates - In most cases, machine difterentiation is accurate
enough L0 determine the timc derivative of o fuaction., For this reason; the
angular rates of angle of attack, side slip, elevation flight-path and azimuth
angle are obtalned by this manner in the present formulation of the Six-Degree-
of ~Freedom Flight-Path Study computer program. In some cages, however, it
may be desirable to have analyticael. expressions for these anguler rutes. For
this reason, the following paragraphs will present e derivation of expressions
for the time rates of change of the vertical and horizontal flight-peth engles,
7 and 0, and of the amerodynamic angle of attack and sldeslip. The basic
definitions of these parameters are given in Section 3.1.

(a) Derivation of time rate of change of flight-path angle, i

The elevation flight-path angle is defined as
-1 -ig ’ }
y = Bin - (3.135)
Vg

Differentiating

L] va(g) - (dg)g)

. 1
7 = 5 5 (3.136)
Vo (%) z
i
\ =




-
¥

="\
=
[
=

The surface-refarenced speed 1s

-2 . 2 .2 2
Vg = ‘/xg +YE "'Zg

from which is obtained the derivative

) Xky + Yo¥, + Ly _ Xgig + Y¥g + L2,
2 v& 92 v
‘/xg + Yg + Zg 8

Substituting Equation (3.138) into Equation (3.136) gives

<=

- Bg(Xghe + Y¥g + ZgZg) - vgzg

2 2 52
5 Yz - %

(b) Derivation of time rate ol change of heading anglc, &

v

The horizontal flipght-path angle is defined by
\

7

¥
g
G - S.lu"]/ — =
c
\&} Xg 4-Yg ;

(3.138)

(3.1L0)

Differcntiating with respect, to time, and rearranging the product of fractions

which 1s obtained, resultis in

s . 2 L) 2 L] i (1] [ ] (1] .
Y (X~ + 1<) - xg(xgxG + Yg¥,)

Qe

Xg(Xe? + yga)

{(3.1h1)

Relations for the quantities ig, ig, ig, and Vg, which appear in the ;- and

. f~ equations, are derived in Section 3.1, Equation (3.29)5 Also appearing

in the 7- and d-equations are the quantities Xg, Yg, and Zg, for which expres-

sions are derived as follows:

(B
see Figure (3.1). In inertisl coordinates

ﬁ = XT'X + YI\! + ZIZ

61

Let R be the displacement vector of the vehicle from the center of the planet,
F



and in local-geocentric coordlnates _
R = 'KTZS (3,1h3)”
The velocity of the body is

= _ &z . BR.= . ®

where ﬁﬁYﬁt is the derivetive of R with respect to the moving coordinate
systenm Xg-Yg-Zg. The acceleration, which is ultimately required, is

- - _a &, = .= bR - SR -~ & dip =
T R R RN - gE G gt R xR 3.1k5)

In terms of the local~-geocentric coordinate system, the velocity and accelera-
tion contributions are

& oo . .

and

5°R
2 - xg':fxg + Yly, + Zolzg (3.147)

The cross products require geveral vector wmuipuluiions to obtain cxprecsions
in & usnble form. The acceleration of Equation (3.145) is more conventionally

written
_ &R -~ L - - — .
5 = TEtMp XFp YU R (wb x R) (3.148)

since the time rate of change of the planet's rotational velocity may be
taken ss zero.

The rotational rate of the planet is

wp = ~wp lz
in inertial coordinatec but may be expressed more conveniently in terms of the
local-geocentric coordinates for the present derivation by

:)P = ""ngXg + ngIZg (3.149)
vhere, from Figure (3.1)
Wgy = Wp Cos ¢y,

wp Sin ¢L

"

ng
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None of the planet's rotaticnal rate appears in the Yy axis gince @ and
lYg are pernandlcular vectors. The Corlolis acceleration, a»p x BR/B% is

—

lxg o lzg

— 5-?: _ . Y — . . p—
pr % 5% wxg 0 Wi = 2 [-(Yguzg)lxg + (“’ngg - ”ngg)lYg

Xg Yg Zg +(wngg)lzg] (32.150)

The centripetal acceleration W, X (wP X R), is similarly obtained using
Equations (3.1%43) and (3. lh9s o be
[ w xR -(w + (w 1y .
By x (8, x K) = -(ug, vz, R)Ix, + (gl R)Tg, (3.151)

Substituting Equations (3.147), (3.150), and (3.151) into Equatlon (3.148)
and cnllecting like terms gives 1

- »" . — . I ——
u = [Xg - EY?.NZg - ‘j’zgwxg Ri ng + [.a.g + L.(ngz - Zgwxg)J lyg

B+ o 2 T (3.152)
+{ Z, + 2Y + WR | 1,
L[ A R ] Zg
The acceleration, in inertial coordinates, is
— - L "Q-
a = Xly + Yly + Zlgp (3.153)

Ejuations (3.152) and (2.153) are equal, and by means ol the dicccetion cosine
matrix relating inertlial. unit vectors to loeal-geocentric unit vectors,
Bquation (3.15), Section (3.1), the conversion is

t "

1y . . .
Xg - r(,:,;,u‘-"g' - 11)7 ll.\v R! ! 11 ,']l kl l !
‘tt ' (X
+ 9(xé¢»z‘ ) X, ) i Jp ko (3.154)
Z{{ + ngwxg + migR . i3 33 k3 Z

Since X g, fnd Zg are the required quantities, the cowponents of Coriolis
and cen %ripeta] acceleratlons wuct be subiracted. The inertial components of
accelerstion mey be -~alcoulated by the direction-cosine watrix reiating body-
coordinate uni% Xectors to inertial-coordinate unit vectors, Equation (3.1},
Section (3.1):

v F. l
i ’ 11 my aq ’ - I
se l: 12 - 25 Eﬁ.{_ (3._L55)
[X] F
ERERE ’ %,

(6) Note that F,, Fy, and F; include the weight components of the vehicle.
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(e) Derivation of the time rate of change of angle of attack, &

The sngle of attack is defined by

a = Tan-l (w) (3.156)

u“'uW

Teking the derivative of Equation (3.156) gives the required solution for §;

o (u - wy) (W - &w) - (w - Ww)(ﬁ - 1'flw) e
a = 5 5 (3.157)
(w = up)® + (w = wy)
(a) Derivation of the time rate of change of sidesl;p,anglel,é
The angle of sideslip is defined by
- V -V
p = Tan~l (———“) (3.158)
u - uw

Taking the derivative of Equation (3.158) gives the required solution for é;

o (u eV - V) - (v - ) (B - Gy)
X

(w - w)? e (v - vy (3.159)

‘he quantities uy, vy, Wy, which appear in the a and B equations, have been
defined by Equation 3.335 of Bection (3.1). The quantities, 0, ¥, ¥, u, v
and w are obtained hy the solution of the equatiouns of wotion., Relations for
the quantities Uy, Vy, and Wy, are obtained as follows:

Wind velocities are normally given in locael-geocentric coordinates. The trans-
formation of these data to body coordinuates 1s made through the inertial
coordinate system. The required direction cosine matrices are

[T | |1, 2 iy | _xgl
i&l =1J1 Jo J3 I&g
1 | k1 ko kg Izg
and
i Ty | i P ix
ly =im mWo m3 ly
1, np np ng 1

64




LE
{

A
7

e TS TSR NS

TR e pemen o ann o

|
|
|

a0 defined Ly Equations (3.15) end (3.;1,21. Thewe transformabion matrices are
the Laverse of thoss used in Bquatiens (3.194) and (3.155), sbove. Tho time
rates of change of vehlole velosity due to change in wind velobpity are;

[a % Y

1hwl ill b 3|4 e 131 Xgy ° EISW wzgdmxﬁwzg R

v [} » N -
V| = 1wy we m3||dL J2 33! Yo, + 2wz Xg, - ux Lgy) (3.160)

' . a
gy + Qg Xg, + g R

Wy

np ng n3| kK ko 1c3l

The methods by which the accelerat.lon components of the wind velocity are
obtained derends upon the manner in which wind data have beon incorporatcd
into the problem. In general form, the derivatives are:

° . hd ¢
B a ,= . C’xgw BXSW Q_h__ axGw _d_ﬁ];-‘, awa dOL
Xew = l¥ew) =~ 55 *om wm 3¢, a6 | o &
3% dY otg, ag; Yg, a
- a e &w Bw dh Bw L &w °L (3.161)
Yo, = &&(ay) = T8 +Jm & * g a ' Vor & >

b o Spy . Sl | O%ey an  Oley O Sley 3
gw ~ at ‘8w’ T Ot oh  d T ofy &t o6r, 4t

When the wind data are incorporated into the vroblem by curve-read techniques,
the total derlvative is obteined by machine differentistion.

3.3-2 Incrtisl Components of Planet Referenced Velocity (Point-Mass |
Problem) - In the point-mass problem, the planet-referenced velocitiesgﬁe, Yo,

und e ore normally calculated. However; the inertinl velacities X, Y, and Z

may be reguirvd ror referemce pwrposes or 1o provide initial conditions for
interplanetary trajectory computations. The transformation between inertial
velocities and planet-reierenced velocitles ils derived as follows:

y

L4,2¢
Tigure 3,21 Inertiel end Earth-
Referenced Coordinate Systems
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Let R be the displacement of the point-mass, (see Figure (3.21)).

In inertial coordinates

R =Xy + YIy + 21, - (3.162)
and

— —‘- @ e O ey & g

V=R=Xly +Yly + %1y (3.163)

In planet-referenced ccordinates
R = xelxe + Yelye + Zelze

However, due to the rotation of the X4, Yo, Ze coordinate system, the veloeity
is

V=§=§ER-+'GPx§ (3.164)
vhere

5— ® e R ed S

'5% = X, X, + Yo Y, + ZalZ, (3.165)

The pleret’s rotation is about the Z-axis which is also the Zg-axis. Therefore
;5 = 'hbii = ‘hiize
and the required cross product is:
x, Ir, 1z,
ISP x R =0 0 ~uy | = (Yﬁwp)'i'xe - (xemp)Tye (3.166)
X Y Zg

(5] e

Substituting Equaiious (3.163), (3.16%), and (3.166) into Equation (3.16h)
X1x + Y1y + ily = (X + upre)Ixe + (Yo ~ wuXe)Ty, + (2¢)Iz, (3.167)
The relation between the unit vectors in the inertial system end unit vectors

in the planet referenced system are obtained by a single rotstion about the
L-axisg.

. N e ie . - - R U B
LDs Wrldibdurmoeawis eibiviz g

T

- I, 8 1Ze\\\\ ike ! Cos Wyt ~5in Wt 0 i Iy

Y “p Tre |= |Stn @yt Coswpt 0 ||Ty| (3.168)
1z

/ \jA;yZ
LA i i N
1X
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The transformation from plenet-referenced velocities to inertial velocities
is made with the inverse of the matrix of Equation (3.168) and the component
relations derived in Equation (3.167).

X Cos wpt Sin Wpt 0 Xy + W ¥,
Y| = |-8in ut Cos wpt O | |Y¥g = W Xe (3:169)
7| 0 0 1|2

The components of inertial velocities are used to calculate the speed of the

body as:
v -_-‘/ X2 4 Y2 4 28 (3.170)

Equation (3.170) is valid regerdless of the initial coordinate system involved.

3.4 Interplanetary Trajectory Problem Coordinate Transformations - The
Six.-Degrec=of-Freedom Flight-Path Study computer program may be used to compute
the injection conditions for vehicles embarking on deep-spnce Journeys from a
planet; and may also be used to coupute the terminel trajectory of vehicles
approaching a planet from such journeys. Since the Six-Degree-of-Freedom
Flight~-Path Study gomputer program considers the actual volume and gravitational
effects of a planet's oblateness, as well as the atmosphere, this program is
suited to the detailed computation of the motion of & space vehicle in the
proximity of a planet. Use of this program would be costly from the stand-
point of machine and analyst tiwe, however, and a reduced-degrees-cf-freedom
point~mass problem formulstion which accounts for the position of the planets
and the resuliling strength and direction ol the gravitalional [leld at the
location of the vehlcle would be more useful. The following paragraphs explain
the coordinate systems convenlent to such a problem and derive the coordinate
Lransformationes required for the transition. It should be noted that the
coordinate transfermations presented-in the following psragraphs are performed
only once in the computsilon of a trajectory using the Six-Degree-of-Freaedom
Flipght«Path Study computer progrem, whereas the transformations presented in
the preceding parapgrophs of Section 3 are regquired at every time step.

3.4.1 The Coordinates of the Interplanetary Tralectory Problem - The
coordinate systom ncrmally sdopted lour the interplanetary trajectory problem is
a heliocentric, equatorisl, Cartesian axis system based upon the Earth's
equatorial plane and the mean vernal equinox of reference date in ephemeris
time. This system will be called the T~A-I" coordinate system for the Six-
Degree-of-Freedom Flight<Path Study. The T- and A-axis are in the equatorial
plane of reference date, ephemeris time, with T pointing to the mean vernal
equinox of this dete. The I' axis is perpendicular to the plane of the T-~A
and 1z pusitive toward the north nnle of the Earth. The position of the planets
is normally given in this coordinate system, and thc position and velocity
of the vehicle will be conveniently calculated in this coordinate system
by &an interplanetary trajectory computer program. The vehicle position and
velocity will be computed relative to the center of the sun. It is assumed
that the interplanetary program also has the capability of translating the
origin of the coordinate system from the center of the sun to the center of a
planet without disturbing the angular orientation of the axes in space. The
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Planetocentric-equatorial components of the plepet-reference position and
velocity may then be computed in the interplanetery -trajectory prchlem. .

3.4.2 The Inertisl Coordingtes of the Bix-Degree-of ~-Fregdeém Problem - The
X-Y-Z "inertial" courdinates of the six-degree-of -freedcm.problem have heen
defined in Sectdon 3.1: The X-and Y-axis of this system are in the equatorial
Plane of the planect with X inertially fixzd to the meridian of the vehicie at
the time of prcblem initiation. When trensferring from the interplanetarxy
trajectory problem to the six-degree problem, the ¥-axis will be determined

by the planet meridian of the vehicle at the time of transfer. The Z-axis

I8 aligned with the polar axis of the planet and is positive towards the south
pole.

3.4.3 Astronomical Angles Reguired for the Coordinate lransformation -
A convenlent derivation of the direction cosines relating the X-Y-Z andT-A -T

coordi~ate systems may be made using the right ascension (X¥y) and decliuatién
(8y) of the planet®s north poler exis with respect to the T-A-I roordinate
system of the reference daote. The right ascension and declinstion or the
north pole of several of the planets may be found on Pages 521 and 522 of the
1960 American Ephermeris and Nautical Almanac (Refevence {(10)). The two
rotations through Gy and Oy define the equatorial plane of the planet; one
uore rotation, the hour angle, is necessary to orient the X-axis of the
Six-Degreec-of-Freedom problem. This procedure may be used for transferring
clther Yo or from the Six«Degree-of-Freedom Flight-Path Study computer program.

3.4.4 Transformation From Interplenetary to t.e Six-Degree-of-Freedom
Inectlal Coordinate System - The informetion required to evaluate the direc-
tion coscines in this coordlnate transformation are:

1. The right ascension and declination of the north polar axis of the
planet in question.

mean-egquinox-of-reference~datec coordinate
kL,
~ waa

2. Position components in the
o ¢ center of the subjecet planct,

s i
system wilk the crigin

The required dircction cosines wlll be determined by the multiplication
of the transformation matrices of each individual rotation required to alipgn the
two coordinate systems according to the method- of Reference {(9). The sequence
of rotations is given by: (See Figure (3.22)).

IX } 1-1\
Iy [= [180° || My |[|90%-8y ||ow ||I4 (3.171)
1y X -z A I [|1p

The equatorial plane of the planet 1s detined by “he ccordinate systen
A-B-(-Z) which is obtained by rotating through ay and (90°-3y). Tne Y-axis
will be located in this plane by the meridian of the vehicle at the time of
transfer. The angle Ay specifies the hour angle of the meridian of the vehicle

with reference to A and may be determined from vehicle position components,
as noted in the next paragraph.

€8



FIGURE 3.22 A UNIT SPHERE SHOWING TRANSKFORMATION
FROM AN INTERPLANETARY TRAJECTORY PROBLEM TO THE
SIX-DEGREE~OF -FREEDOM FROBLEM INERTIAL COORDINATES
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The direction cosines of the transformation will be obtained by writing
Equation (3.17L) in teras of the individual transfornetions as follows:

Tx| L © Of|Cosry StndyoO||Stngy 0 -CosOyf Cos oy Sinoy O|fTy

fy =10 - Ql!—Sin Ay Cos Ay O 0 1 0 ~Sin oy Cos oy O TA

!Ii ¢ 0 -1' 0 0 Lf[Cos®y O Sin &y 0 0 1 IF

Carrying out the indicated multiplication gives the required transformation,

Ix (Cos Ay Sin Sy Cos oy (Cos Ay 8in By Sin ay  (-Cos Ay Cos By) Ty
-Sin Ay Sin ay) 48in Ay Cos ay)

T+ = | (8in Ay Sin By Cos oy (8in Ay Sin &y Sin oy (-Cos By Sin Ay) T
+Cos My Sin ay) -Cos Ay Cos Of)

I, (-Cos By Cos o) (-Cos By Sin o) (-Sin By) Tr

(3.172)
Since the X-axis is established by the position of the vehicle at zero-time,
when the transfer is wade to the Six-Degrees-of-Freedom Flight-Path Study, the
Y component o the transformetion of Equation (3.172) nust be
(Siu Ay Sin By Cos oy + Cos Ay Sin og)T + (Sin Ay Sin By 8in O - Cos Ay Cos U)A
- (Cos By Sin Ag)l' = .0
which, solved for Ay, rives

1 ACos oy - T Sin oy 3 (3.173)
TCos Oy Sin By + A Sinoy Sin‘BN - TI'Cos by 3-

Ay = Tan”

3:4.5 Transformation From the Six-Degree-of-Freedom to Interilanetagx

- Coordinates - The direction cosines derived in this section are applicavle vhen

transferring the computations from the six-degree-of-freedom problem to an
interplanstary irajectory problem. The final angle (My) in the sequence of
‘rotations discussed in Section 3.h.U4 was dcicimined from knowledge of the
vehicle position in the mean=-equinox-of-reference-date coordinate system.
Since these position components are not known vhen transferring from the six-
degree~-of -freedom problem to an interplanetary prcoblem, another method of
determining Ay must be used. Since the right ascension of the north-polar
axis of the planet establishes the line of intersection of the planet's
equatorial plane and the Earth equatorial plane of date; the hour angle of

the launch site at the time of launch with this datum is cequlred. Unfor-~
tunately, planet hour angles are not usually referenced to this pointj however,
the angle Ay may be evaluated from the planet hour angle of the vernal equinox
with the planet meridian of the launch point at the time of launch. Frow
Figure (3.23), the required relationship is:
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FIGURE 3.23 UNIT ODIMERE DIACRAM
SHOWING THE TRANSFORMATION FROM THE SIX-DEGREE -OF ~-FREEDOM
PROBLEM TO AN INTERPLANETARY TRAJECTORY PROBLEM
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M= My - vy 4+ 90° (3.17h)
vhere 4y is the hour angle of the vernal eguinox of date with the la.unch pd'ftnt
at the time of launck; and vj is the angle of the vernal equirox of date with

the intersection of plenet's equatorial plane and the Berth equatorial plene
of the reference date.

The angle Yy will be determined from the sphericel triangle TCA (Figure
(3.23)). By the iaw of cosines for sides:

Cos vy = Cos TC Cos (90 + o) + SinTC Sin (90 + ay) Cos ny (3.175)

Several tarms in the equation must be related to the known parameters Oy
and 8. The cosine of fN may be found from the law of cosines for angles:

Cos ny = Coa 8 Cos vy : (3.176)
From the law of sines:
N
SinTC = Cos By Cos Oy (3.177)

The cosire of the arcTC is also required im Eguation (3.175) and is easily
obteined by the trigomometric identity:

Cos TC = ﬁ - Cog® oy Cos® oy (3.178)

Substituting Equotions (3.1.76), (3.177), ana {3.178) into Equation (3.175)
and solving for Cos vy glves the relation:

( -3in Qy )

Cos vy = (3.179)
2

‘\‘,’l - Cos? By Cos® o

The angls My 15 then obtained from Equation (3.174):

-Sin @ .
Mj = Mg - Cos™l / ! \ + w° (3.18c:
; \ ‘/l - Cos? by Cos? o /

The angle Ay completes the set of ungles that will be used to rotate the
T-A-T coordinates intc congruence with the X.Y-Z system. The transforwation
matrix for each individual rotation will be determined and the required direc-
tion cosines will be obtained by multiplying these matrices.

= o L]
Ty = [180°% |y |90- By oy | ['A' (3.181)
I X ¥ ’ Al ]oT I'IFI

This sequence of rotations 1s identical tc the sequence in Section (3.k.h).
Therefore, the definitions of the directlon cosines used in Section (3.4.L)also
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may be used when transferring from the siz-degree-of-freedom problem to an
interplanetary trajectory problem. The angle ANy is. compubed in & Gifferent
menner in each case, but this will not aeffect the definitions of the direction
cosines. The transformation from X-Y-Z to T~A« I' coordinates ia therefore
given by the inverse of Equation (3.172).

Ly {Cos Ay Sin 8y Cos g {Sin Ay Sin By Cos ayy -Cos dy Cos ay {{ x

~8in My Sin ay) +Cos My Sin ay)

Ty|=|(Cos My S1n By Sinoy  (Sin Ay Sin By Sinoy  -Cos By Sinoay Iy
+5in Ay Cos ay) ~Cos Ay Cos ay)

II' (=Cos Ay Cos 5{1) {<Cos by Sin hn) -Sin BN IZ
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k. VEHICLE CHARACTERISTICS
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The methods by which the aerodynanic, propulsive, and physieal *characteristics
: of a vehicle are intrvduced into the Six-Degree-of-Freedom Flight-Path Study com=
' puter program are prosentcd in this section. The form and preparation of these
input data are discussed together with methods by which stages and staging may
he used to increase the effective deta gtorage area allotted 4o a degeription
of the vehicle's properties.

= k.1 Aerodynamic Coefficlents

o k.,1.1 Form of Date Input -~ The prlmery objective of the aerodynamic data

) input subprogram is to provide for a complete accounting of the various contri-
. butions to the aerodynamic forces and moments regardless of the flight conditions
- or the vehicle being considered. Two powerful techniques are avallable for

- use in digital computer programs; (a) an n-dimensional table look-up and
interpolation and (b) an w-order polynomial function of n varisoles prepared

by "eurve fit" techniques. In the first method, the proper velue for earh term
15 obtailned by an interpolation in ™" dimensions where the number of dimensions
is taken to bhe the number of parameters to be varied independently plus the
dependent variable. This wethod has the advantage of accurately describing

even the most non-linear variations with a minimum of preparation effort. The
amount of storage space whici must be allocated to such a method, however, can
achieve completely unreasonzble preportions and may requivc substantial com-
puting time for the interpolatlion as thc number ol dimensions is increased,

The second method has essentially the opposite characterlstics; that is, a

larpe amount of data may be represented with & wminimum amownt of storage

space and the computation time is held to reasonable limits but the data varia-
tiongs which may be represented must be regular. A substantlal amounl of effort
is usually required for i+~ preparation of data by a curve-Iit technique. Both
of these methods arc very convenient when Lhe amount of data to be handled liu
moderate, but tend to become unmanagesble when large amounts of data are required.
This usually occurs when the program, having several deprees ol freedom, is
commiited Lo uae or the other of these two technigues. Therefore, thc Six-
Vegree~-of ~Freedom Flight-~Path Study computer prograrm will incorporate both of

the techniques discuseed as a compromise to take advantage of the more desirable
Fealures of both, To do this, a general set of data equations will be programmed
which define each of the aerodynamic rorces or moments. In pgeneral; the co-
¢fficisnts tor these squations will be obtalncd {row o curve-read Lluterpulation.
Several simplifications may be made to the equations depending cn the flight
condition and vehicle to be considered.

The effects of the following parameters will be considered:
(a) Angle of attuck and its time derivative {a, @)

(b) Angle of sideslip cnd its time derivative (B, B)

(¢) Roll, pitch, and yaw control deflections (p, 8q5 )
(d) Roll, pitch, and yaw angulaer rates (p, q, r)

(e) Mach aumber (My)

Th
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(f) Center-of-gravity position (x¢.g.)
“(g) Reference structural temperature (Tsref)

The aerodynamic forces and moments considered with vespect to each coorw
dinate axis include the effects of angle of attack and sideslip, primary control
deflection with respect to each axls, lag of downwasb, and primary demping
effects. In addition, the -2wlling moment due to yaw rate is included, and
Magnus forces and moments ere accounted for in one of the airframe options.
Complete generslity in the serodynamic ccupling effects has not been included
in the present subprogram optlous since the descriptive terms required depend
upon the particular problem comsidered. However, the storage space provided
for the several existing options is considered to be adequate to accommodate
other specisl problem formulations through substitution of terms.

Quite often the particular application will not require some of the termc-:
listed in order to describe completely the flight path and vehicle under con-
slderation. The subprogram will be arranged so that the computer will assign
a constant value to any curve for which the data has not been supplied. TFor
most curves, the constant value will be zero.  Thiy tedmiyuw will reduce-sub-
stantially the time required for the preparation of data. Values intermediate
o those introduced in a tabular listing will be obtained by linear interpola-
tion. The method of incorporating data for staged vehicles 1s discussed in
Paragraph bt.h. "The method of introducing the effcets of statlc aerothermo-
elasticity is outlined in Appendix Four.

h.1.2 Flight Path and Vchicle Typss - In wost of the cases discussed
below, a " curve-£'it’ technique will be used to obtain all or a vortion of the
acrodynaiic termc. For the purpescs of whis subprogeawm, il will be assumed
that the curvys £ii Lws been selected Lo reproasent the variation of the coeffl-
cient about lhe trim conditions. This may have the effect of removing physical
significunce from sowe of the individual Lerms, and oniy ihe cum of the terms
will represent the data. A typical example is indicated below.

- Actual
— ee e e Curve Fit
CNg Curve Fit
! VY
/ =
J e

~ Teim

Normal Force Coefficient, Cy

'"“~CN° Actual

Angle of Attack, o

Figure 4.1 Curve Fit Non-Linear
Aerodynamic Characteristic
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In this case, the CNy and Cyg values used in the equation for Cy are obviously
different from the actual valuaa af these parameters.

A functional flow dlagram for the solution of the aerodynamic fo:ces and
wmoments is presented in Figure (4.2). It should be noted that the actual
machine programming will not necessgarily follow the sequence shown since
certain computer operatiens have been omltted in this description of the
problem formulation.

Airframe Option (1) Controlled Aircraft - A controlled aircraft repre-
sents the most general case that will be considered. In order to account for
the many component forces, it is necessary to make certain restricting assump-
tions., The assumptione will be made that the aircraft ls confined to moderste
variations in position angles and control deflections. Varying Mach number,
center-of-gravity shift along the x-axis, and aerothermoelastic effects are
included. The coefficlents can then be expressed as shown in Block Nuwber
(L-7) of Figure (4.2). The functional computation sequence for this option
proceeds from Block Number (1) to Bluck Number (1-7) in a straight-forward
MENNEr .

In the axial force coefficient equation, there is a provision for includ-
ing the cffects of variation in Reynolds number., This will be accomplished
by supplying CA, as a function of unit Reynolds number and Mach number. A
varee~dimensionsl interpolation will be made to determine ohiv vaius Lu b w32
in the equation.

Pal

The analyst will be provided the option of bypassing the aerothermo-
elasiic calculabtlcns as indinnted in Figure (4.2)., The chanpe in dynemic
derivatives due to a chanpe in the center-of-gravity location is prograwwed as
a curve-read in order to avoid the complicatlions of a transfer. Il should be
noted thalt clther body-axis or wind-axis data can be supplied to these equations
as the provision will be made to rotat: wind-sxis dota into the tody axis.

The definition of o and 3 a5 applicd to the SDPT computer program is noted Lo be

a = Tan-k (E..:..‘i‘i) and p = Tan~t [V - ¥y (4.2)
u - Uy d o= Uy '

Deta supplled must correspond to Lhis definition or an alternate compuiatlon
of these angles must be formulated to agree with the method of data reduction.

Airframe Option (2) Point Mass - The comslderation of the motion of a
mass greatly simplifies the equations for the aserodynamic coefficients as no
moments are considered. The additional restrictions that are imposed on this
recutine are that the vehicle is confined to moderate variations in position
angles and control deflections. In addition, no consideration of asrothermo-
elastic effects, dynamic effects, and center-of-gravity shifts will be made.
??1s)reduces the eguations tc the forwm shown in Block Number (2-3) of Figure

b.2)

The forces calculated in this cuse will be In the wind-axes system rather than
the body-axes system. This is in kceping with the solution of the equations
of motion as noted in Paragraph 2.4%.
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Alrframe Option Spin, and Similar Meneuvers of a Controlled
Aircraft’ = The study of a mitehéuy, spin, or similar mansuvers of an alrcraft
is normally restricted to particular conditions of velgeity and’ é]titﬁaa,j;z
Aerothermoelastic effects and denter-gf-gravity shifts will be negleoted,
Since large angles of attack and sideslip are expected, a four-dimensional table
look~up and interpolation of the coafficients &s functicar of angle of attack,
sideslip angle, and Mach nuuber will be used. For this case, the parameters
(Ca)s=0, (CN)g=0s (Cy)B=0s (C1)=ps (Cm)g_g, and (Cplp.o Will be specified as
functions of o, B, and My. This allows the equations to be reduced to the farm
indicated in Block Number (3-3) of Figure (4.2).

Airframe Option (k) Tumbling Re-entry Shapes -~ This option will. have the
capability of accounting for the aerodynamic characteristics of a tumbling
re-entry shape that is rotationally symmetric about the longitudinal axis.

The Magnus forces and wmoments developed by a spinning motion about the longitud-
inal axes may be included. Restrictions on this case are: (a) no controls

are employed, (b) the center-of-gravity location is constant, and (c¢) aero-
thermoelastic effects are neglected. Each of the coefficients may then be
expressed as [unctions of the total angle of attack and Mach number. The

total angle of attack is defincd in the following manuer:

op = Tan-1 \A; - ‘Z:)f ;;V - Vw)z (b.2)

The aerodynamic coefficlents required to describe the forces and moments
on such a vehicle are listed in Block Number (h-1) of Figure (L.,2). A three-
dimenscional interpolation must be performed for each coefliclent together
with a rotation of the coefficlents through the angle @p to the bedy axes
system. The acrodynamic roll angle, @p,1is defined as:

gn = Tanl (l'_.:_.‘_'.‘i\ (L.3)
W - ww

4.1.3 Error Consteute - The use of error constants, designated by the
symbol €4, to wodify the aerodynumic data characteristics is shown in Figure
(4.,2). A detailed explanation of these error constants and their use is given
in Section 4,5,

4.2 Thrust and Fuel Flow Data - The techniques to be employed in the
introduction of the thrust and fuel-flow data into the solutions of the equa-
tions of motion are developed in an approach cimilar to that employed in
Paragraph k.1, which considered aerodynamic data. An n-dimensional tabular
lieting and interpolation technique is used, with the independent variables
being defined by the type of propulsion unib belng considercd. Eguationz are
developed to resclve the thrust forces into [forces and moments in the vehicle
body-axes systew. The provision to include error constants in the thrust and
fuel flow parameters is provided.

4,2.1 Data Inputs - The number of independent variebles which affect
the thrust and fuel flow is determined by the type of propulsion unit being
considered. For the present formulation, the propulsion units are grouped
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into the following options: (1) non~acatrolled-thrust rocket, 2°) con§r91¥id- :Lf%
~thrust rocket; and {3) ‘air bréathing engines.  Options. (2) ond- ) reguire T TE3
command information from an autopilot "or FLight Plan programmer. - Figure e {R3Y - e
presents a functional flow diagram for the computation” of ‘emch of these three =
options for the case of a single nozzle (or propeller) engine. The data input 3
technlques applicable to each optlon are outlined below. I
1

Propulsion Option (1) Non-Controlled-Thrust Rocket - The thrust of a ,é
non-controlled~thrust rocket motor is assumed variable with time and altitude. T

The altitude effect is determined by the exit area of the nozzle, Ag, and !
the ambient pressure, P. If the thrust is specified for some constant embient ES
air pressure, the altitude correcticn can be calculated within the subprogram. T
In this subprogram, the vacuum thrust, in pounds, will be introduced by a

e tabular listing as a function of time, in seconds, and corrected as follows:

T = Tyac - PAg (4.h) :

The propellant consumption rate will be specified by a tabular listing, -
in slugs per second, as a functlon of time, in seconds. The vehicle mass
cen then be determined from the inlegratcd propellant consumption rate and

initicl mace.
t
L = 7”6 - f- #hf-dt (k.5)
(6]

Wote that (a4 onm Jat) = - onr for this definition of mass

Propulsion Option (2) Controlled-Thrust Rockel - The conbrulled-thrust
rocket differs from the non-controlled in that the propellant flow rate and
the thrust at any given time and altitude may be vuried by the {light pro-
grammer or autopilot subprograms of the computer program. It will be necess-
ary, therefore, to specify the vacuum thrust as a function of propellant flow
rate. The propellant flow rate must be obtained from an autopilot (or flight
procrammer) signal. The flow-rate commend will then be used in the tabular
listing of vacuum thrust. Correctlon c¢i’ thls thvust for altitude will be
made by usc of Eguation (4.4). The vehicle wass is devermiuca from an inte-
gration of the mass {low rate according to Equation (4.5).

Propulsion Option (3) Air Breathing Engines ~ An air-bresthing engine
ig gtrongly at'fected by the environmental conditions under which it is operating.
Engines which would be grouped in thils classification are turbojets, ramjets,
pulsejets, turboprops, and reciprocating machines. The parameters which will
be consldered of consequence in this program are:

(a) Altitude (h - £t)

(b) Mach number (My)

(¢) Angle of atteck (@ - degrees), and

(d8) Throttle setting (N - units defined by problem).

Both the thrust and fuel flow are functions of these varisbles. In order
to accommcdate these variables, a five-dimensionel tabular listing and inter-
polation will be used to obtain both thrust and fuel flow. The thrust needs
no further correction as the effects of all parameters are included in the
interpolated value. ‘I'he mass of the vehicle is delermiued from Eguatisn (h.5).
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The functional. cowputatiou sgglancd § in#roduﬂivghthese dnta 1s streight-

Jexward ue outlined in Figure (k.3). A;@Q Jbawn in Tlygusa E
putation required to resolve the engine foree into tad"«hxgﬁ o

somponents. This compnbtatlon murt be performed for allAyropuls on -op! ions and.

is, therefore, associated wiiik the fixed portion of the uompuber program rather

2 with the tosust wad fusl f.ow subprograi. Tt resolution is shown in
Fig4re (4.3}, acwever, sipua it is so closely assucilated with these forces.

h,2.2 Component Forees and Moments - ALl propulsion units aré;capgble
of introducing components of force and moment along cach of the three coor~

dinates of the vehicle body-axes system. These may be due to misalignments,

position of installetion, or vectoring of the thrust. A common method of

control utilizes the thrust force to produce control moments by swiveling the
exit nozzle. Since the equations of motion are derived on the basis of wotion
in the vehicle body-axes system for all options except the point-mass, it is

necessary to resolve the forces and moments in the proper axes system. De-

fining the plane of swivel as a plane parallel to the x-axis and including the

thrust vector, let ¢n be the angle of rotation of this plane from the x-y

plane (y into z rotation is positive). Also let Ap be the angle between the

thrust vector and a line parallel to the x-axls in the pleane of swivel
(0 < » < 90°). Then

Tx = T Cos )»,T
Ty = -I Sin A Cos ¢p
T, = =T Sin My Sin ¢p

where Ty, Ty, and T, are the componenls of Lhruvt in the vehicle pody-sxes
system. (A" positive T produces a positive U.) These forces will introduce
wowents,

L = T, (y - fve.e.) - Ty (2y - £2¢.6.)
MT = (ZN - : ('_\ - T?_' (XN - Ax{‘,,(‘:_)
Np = Ty (xy - &x¢,q.) - Tx (0§ - &vc.6.)

(4.6)

(&.7)

Wnere Lp, Mp, cnd Np are the thrust moments sbout the vchicls x, y, snd v body
aves recpeciively; vy, YN, and zy are the distances of the point of swivel of

the nozzie {row the roeference renter of gravity and &n ., &ve.g., and &g,

represent the shift In the center of gravity from the reference location.
the Six-Degree=-of-Freedom Fiight-Path Study computer program, consideration

G.
tn

of the movement of the cenver of gravity will be confined to translation along

the x-axis. This reduces the momeut eyu-tions to the following form.

LT = TZ'YN - TyZN
Mp = Tyzy - T,(%y - &g,
Ny = Ty(xy - &x¢,,) - Ty

(}4-8)
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FIGURE 4.3, THRUST AND FUEL FLOW SUBPROGRAM
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If wore than one engine is used, or if a single engine with more than one exit
nozzle is used, then the gun of the individual forces and moments wust be
obtained. In this case: ' ' B

Tx = Txl+TX2+-acn-o.tlovt-.--- ‘i'Txn (l;"g}

and similarly for Ty and T,.

IT = LTl4‘LT2+-to-ooousn--n-.na +IT11
MT o MTl+MT?_+""""""""' +MTn (ll-.lO)
NT = NTl +NT2+ -.-n-n..o-‘caon--t +N’Tn

The functional flow diagram to incorporate 2 multiple engine configuration into
tne Six-Degree-of ~Freedom Flight-Path Study computer program is outlined in
Figure (4.h). However, the present subprogram will be limited t¢ accounting
for single-engine, single-nozzle operation only. More than one engine can

be %ccounted for if the cowbined effccts cen be grouped into a single "effect-

ive” cngine. Reassembly of the. program deck will be required for multiple
engine arrangements.

h.2.3 Error Conslants ~ The use of crror constants, designated by the
symbol. €5, to modify the thrust and tuel fiow characteristics is shown 1n
Figures ﬁ.3 end h.k., A detalled explanation of these error constants and
Lhelr use is given in Section h.S.

.3 Physical Characteristics - 'he methods Lo be cuploycd Jor ths ilntro-
duction or vehicle physical churacterlstics into the Six-Deprec-of-Freedom
Flipght--Path Study cowpubter program are outlined in this section. A table
look-up and interpolation technique is used to determine those parawcicrs
vhich are variasble., A provision is made for the inlroductilon of error constnnts
ints severul of the paramcicre.

h.3.1 Catepories of Puysical Cnaractecistics - Physleal churacteristics
ars irtroduced Into the compuler program in bwoe groups: (o) charncteristics
t3ed in the general solution of the equations of motion, and (v) characteris-
Lier used caly in specific, or suxiliary, subprosrams. The physleal charsag-
teristics used in the auxiliary subprograms (e.g. nose radius, wedge engle,
skin thickness, skin density, and thermal conductlvity used in the aerodynamic
heating subprogram, Section 7.) will be specified as input data along wilh
the introduction of the specific subprogram. The following items will be
defined in the general wvehisle characteristics subprogram:

(a) Initial mass of the vehicla (),

(b) Reference area (S),

(c) Reference lengths (&1, 4p),

(4) Reference center-of-gravity location (X¢,G.p.ep)s

(2) Rotating wachinery pitch angle (6,),
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(£f) Rotating mechinery angular rate.(wp),

(g) Rotating machinery moments of inertia (Ixr’ iyi,'fgf);' -
(n) Vehlcle center-of-gravity location (xg.g,), o
(i) Vehicle moments of Inertis (Ixx, Lyy, Lzz; Ixys Ixes Iyz), and
(J) Reference jet-damping lengths (ly, 1z, 11, Ip, 1n).

Ttems (&) through (g) will be constant throughout any stage. Items (h) through

(3) will be variable during the stage due to the variation in mass caused by

fuel consumption. Figure .5 presents a functional flow disgram defining the
mapner in which these characteristics are introduced intc the cowpuler program.

}.3.2 Retference Weiphi - The instantaneous mass is used in the computa-
tion of the body motion. The reference welght is oblained by:

Wp o = on (32.174) (4.11)

4,3.3 Error Constants - The use of error constants, designeted by the
symbol &5, to modify the general vehicle physical characteristics is shown
in Fiogure 4.5. A detailed explanation of these error constants and their use
is given in Section k.5,

h.h Otoges and Steging ~ A problem common to missile performence analyses,
and encountered frequently ilu airplane porformance work, is that of stagling or
tiie release of dicerele masses from the continuing airflrame. The effect of
dvorping a booster rocket or fuel tanks is often great enough to require Lhul
the couplete sct of aerodynamic data be chenzged. Slase chanpges at conslant
wedphl, sueh as exbtending drag hrakes or turaing on alterburners, may also
require revising the aerodynawic or physical characteristics of the vehicle.
Another use of the staging technique-is possible with the present computer
program which does not involve physical changes to the configuration; this
technique may be used to revise the aercdynamic descriptors as a functiva of
acrodynamic attitude or Mach number. With this use of Lhe slage concept,
accurate descriptions of the forces and moments acting upon vehicle may be
maintained over wide attitude ranges if required. Other applications of this
stage technique ure possibvle. Normally it is nob practicsl to stop the com-
pules and manually insert a new set ol data. A better approach is to have
the computer do this automatically. The loading of new data will be done
automatically by the computer on the basis of whether a specified variable
has exceeded or become lass than a pre-selected value. For generality, it
is possible to test on four values in each direction.

When the new dala are read in, the conditions representing the last tine
step will be read in as initial conditions for the next stage. This avoids
the discontinnilty that would result from an infinite rate of change of
center~of-gravity location. It also will cause the integration routine to
be started over which will reduce the computer-induced trsnsients due to

staging.
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DATA CONSTANTS

Mg 8, d3, dp, Oy, wp, Lyps Iyr’ Lors XC-G.'Relf

\

TABULAR LISTING
X0, = £0m) + 41 Ly = £m) + e
Lk = f(m) + t19 Iy, = £(m) + €23
Iyy = t(m) + €50 Iy = o(m) + e
Loz~ £(m) + ‘21
TABULAR LISTING
1, = f(%c.q6.) 1, = f{%g,q,)
1, = t(4c,6.) 1y = £(X¢..)
1y = (X0 q,)
TABULAR LLISTING
ixx = 1{Lg) f’.xy = I{tg)
iyy = £(tg) I, = £(t,)
I,, = f(tg) Iy, = t(tg)

AXC'G- = XC'G. - XC.G;Ref

| CONTINUE PROBLEM |

FIGURE 4.5 VEHICLE PHYSICAL CHARACTERISTICS SUBFROGRAM
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4.5 Erroxr Analxses - The Six-Dzgree-of-Freedom Flight-Fath Study computer
program will incorporate a provision for conveniently performgsg flight~path
error and dlspersion anglyses by trajectory computation. This problem involves
the determination of flight-path dispersion due to deviations-of- Anput guan-
tities from their predicted nominel values. The usuwal approach to this type
cf problem requires that a serles of trajectories be computed in which standard
eeviations, or erross, are syztematically introduced for each parameter while
the remaining parameters are held at thelr nominal values. These results are
then combined to determine the" probable” dispersion. This approach will be
= implemented in the Six-Degree-of-Freedom Flight-Path Study computer program
- by providing a simple and efficlent method of introducing the deviations.

' The capability of modifying a nominal value by either an error constant
multiplier or an additive error constant is provided for many of the parameters
as outlined below. The provision of these error constants will reduce sub-
stantially the number of tabular data listings that wust be changed for an
grror analysis, thereby reducing the work of the analyst. The determination

of the standard deviantion of each of the parameters and the method of combining
the trajectory variations are left to the analyst in view of multiplicity of
corblnations pussible.

BRI

4h.5.1 Aerodynamic Data - The provision to modify the aerodynamic cz-
etficients through the use of error constants, €y, is oullined Iln Section 4.1,
The constants are applied as follows:

np = (Cx + €0)a*s

a = (e3Cp + €)q*s

y = (uCy + cg)a¥s (4.12)
L = (E7Cl + €g)q¥S do

n o= (egcm + clo)qﬁs &y

n o= (¢,C, + €1p)a¥s dp

These evror constants allow the totul merodynamic coefficlent to be modified
to wuccount focr configuration modification, experimental o analytical error,
or misaligumentis.

4.5.2 Thrust and Fuel Flow Characteristics - The provision to modify the
thrust and mass characteristilcs, through the use of error constants, is out-
lined in Section 4.2, The constants are introduced as follows:

T = C]-BTVAC + Glh - P.Ae
A N (h13)
NL= W+ €5 * tg M, dt

An error-ccnstant multiplier 1s not provided for the vehicle mass due to com-
plications discussed in Paragraph 4,5.5.
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4.5.3 Vehicle FPhysicel Characteristics - The provision to modify some of
the vehicle physicel eharacteristics through the use of error congtants is
outlined in Section 4.3. The constants are applicd as follows:

.G, = T + eg

I,, = f(#) + ey (4.14)
Iy = T(M) + epp
Iz = £() + epg
Iyz = £(M) + ey

4,5.4 Autopilot Functions - Error constants associlated with an autopilot
will necessarily be defined by the choilce of autopilot. Section 6 presents a
description of a typical control system which will be programmed for the Six-
Degree-of -Freedom Flight-Path Study computer program. Although the constants
are referred to as bias and drift constants, they are, in effect, error constants
which serve to modify nominal values. These constants are applied in the
following way:

Riasg on Control Surface Deflection and
Rate of Control Surface Deflection

st .
&y = Oy Blhn
t o, (4.15)
S
)

Bims und Drift on Attaitude Sensors

Opi = O * Big + Bygt

¢p, = ¢p + Byp + Byst

Bias on Rate Gyros

p' = Dp + Bgy
q' = q + le (hol?)
r* = 1 + Bop
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In the application of @rror constants in the above equations, .caution must. be
exercised to insure that the units are consistent. Bach of thé E¥rdr eonethints
will be assigned a nowinal value which will be used when no other velue is
srecified. The constanis which are wultipllers will have a nominal value of
unity, while those that are addltive wiIl have a nominal value of zero.

h.5.% Additional Errors -~ Not all of the system input constants can be
modified for error analysis studies as indicated above. In certain cases, 1t
may be found unrealistic to wodify the input data through the use cf error
constontes because the actual deviation would not appear as simply a constant
increment or percentage change. &n example of such a case would be the change
iu thrust-time history of a rocket due +o temperature changes of the propellant
since such a change affects both thrust level and burning time. For an accuratc
representation of such a case, it would be necessary to wmodify the entire
tabular listing accordingly.

4.5.,6 Atmospheric Density Error - An error constant has been incorporated
in the computation of the atmospheric density in Opllon 6 only. The constants
are applied as follows:

p' = Cogpt €pp (4.18)
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5. VEHICLE ENVIRONMENT

The models for simulating the environment in whieh a vehiele will operdate =177
are presented in this section. This environwent includes the atwospheric wind,
and the gravity field conditions assoclated with the planet over which the
vehicle is moving. The shape of the planst and the conversion from geodetic
to geocentric latitudes are also considered. In the discussions which follow,
the descriptions of vehicle environment pertain to the planet Earth. The
environmental simulation wmay be extended to any planet by replacing appropriate

constants in the describing equations.

5.1 Atmospheres ~ The concept of a model.atmosphere was introduced many
years ago, and over the years several models have been developed. Reference
(11) outlines the historical background of the graduml evolution of the ARDC
model. The originasl (1956) ARDC model has been revised to reflect the density
variation with altilude that was obtained from en analysis of artificial
satellite orbit data. This revision is the 1959 ARDC Model Atmosphere.

The cdvantage of a model. atmosphere is that it provides a common reference
upon which performance calculations caa be based. The model is not intended
to be the "final word" on the properties of the atmosphere for a particular
time and location. It must be realized that the properties of the stmosphere
are quite variable and are affected by many parameters other than altitude.

Al ihe present time, the "stale-ol-lhe-art™ is not adwnced tc the point vhere
these parameters can be accounted for and it may b